summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--admin/meeting-notes/2025-11-3.md29
-rw-r--r--tutorials/module_4/4.0 Outline.md47
-rw-r--r--tutorials/module_4/image_1761513820040.pngbin0 -> 70096 bytes
3 files changed, 76 insertions, 0 deletions
diff --git a/admin/meeting-notes/2025-11-3.md b/admin/meeting-notes/2025-11-3.md
new file mode 100644
index 0000000..1190484
--- /dev/null
+++ b/admin/meeting-notes/2025-11-3.md
@@ -0,0 +1,29 @@
+## Updates
+- https://pythonnumericalmethods.studentorg.berkeley.edu/notebooks/Index.html
+- Numerical Methods for Engineers Steven C Chapra
+
+---
+## Topics
+and questions
+
+- [ ] Decide on textbook
+- [ ] Module 4: Revise lecture order for 4.2 plotting philosophy
+- [ ] Module 5: Go over outline
+- [ ] Waiting on experimental/supplementary data from lab engineers (MECH 338)
+
+---
+## Discussion
+
+
+---
+## Actions
+
+Module 4: Data Analysis and Processing
+
+- 4.1. Introduction to Data Analysis (describe the Panda Toolbox)  -> One Lecture
+- 4.2. We should focus on effective ways of looking at data  (philosophy of making that make sense) -> One Lecture
+- 4.3. I/Ofile handling (different types of data files: ASCII, CSV, TXT, JPEG,...) -> Here they will learn how to read/handle: datasets including images. -> One Lecture
+- 4.4. Statistical Anasis (mean/averaging, standard deviation, variance...) -> **_Reminder: Ciprian to send application from Spectroscopy and CFD -> One Lecture_**
+- 4.5. Data Cleaning (linear regression, least square fitting, extrapolation, moving average) -> One Lecture
+- 4.6. Data Filtering & Signal Processing (filters: Gaussian Filter, Sobel edge detection, Kalman, Butterworth, FFT) -> We need to give a lecture of what is/how it works Digital filter design (lowpass, highpass, bandpass, filter response curves, how does one select a given filter). One lecture all theory so that in the second lecture they learn how to select different filters. -> Two lectures
+- 4.7 Image processing: apply some of the filtering to make images sharper/crispier, teach them how to make videos/gifs out of images. -> One Lecture. Possible application: **_from CFD density data obtain Synthetic Schlieren images (Ciprian will send you this!)_**
diff --git a/tutorials/module_4/4.0 Outline.md b/tutorials/module_4/4.0 Outline.md
new file mode 100644
index 0000000..f847484
--- /dev/null
+++ b/tutorials/module_4/4.0 Outline.md
@@ -0,0 +1,47 @@
+# Module 4: Outline
+
+1. Introduction to Data and Scientific Datasets
+ a. What is scientfic data
+ b. Data Processing flow work
+ c. Intro to Pandas
+ d. Manipulating data frames
+ e. Problem: Create a daraframe from Numpy arrays
+
+2. Interpreting Data
+ a. Understanding your data
+ b. Purpose
+ c. Composition
+ d. Color
+ e. Problem 1: Composing or fixing a plot
+ f. Data don't lie
+ g. Problem 2: Misleading plots
+
+3. Importing, Exporting and Managing Data
+ a. File types
+ b. Importing spreadsheets with pandas
+ c. Handling header, units and metadata
+ d. Writing and editing data in pandas
+ e. Problem: Importing time stamped data
+
+4. Statistical Analysis
+ a. Engineering Models
+ b. Statistics Review
+ c. Statistics function in python (Numpy and Pandas describe)
+ d. Statistical Distributions
+ e. Spectrocopy (basics)
+ f. Problem: Statistical tools in Spectroscopy readings
+
+5. Statistical Analysis
+ a. Linear Square Regression and Line of Best Fit
+ b. Linear
+ c. Exponential and Power functions
+ d. Polynomial**m 2:** From the DataFrame, add a
+ e. Using scipy
+ f. How well did we do? (R and R^2)
+ g. Extrapolation
+ h. Moving average
+
+6. Data Filtering and Signal Processing
+
+7. Data Visualization and Presentation
+ a. Problem: Using pandas to plot spectroscopy data from raw data. \ No newline at end of file
diff --git a/tutorials/module_4/image_1761513820040.png b/tutorials/module_4/image_1761513820040.png
new file mode 100644
index 0000000..40e32b3
--- /dev/null
+++ b/tutorials/module_4/image_1761513820040.png
Binary files differ