diff options
Diffstat (limited to 'book/module1/1_excel_to_python.tex')
| -rw-r--r-- | book/module1/1_excel_to_python.tex | 119 |
1 files changed, 119 insertions, 0 deletions
diff --git a/book/module1/1_excel_to_python.tex b/book/module1/1_excel_to_python.tex new file mode 100644 index 0000000..300c951 --- /dev/null +++ b/book/module1/1_excel_to_python.tex @@ -0,0 +1,119 @@ +\section{Excel to Python}\label{excel-to-python} + +\begin{itemize} +\tightlist +\item + Importing +\item + Plotting +\item + Statistical analysis +\end{itemize} + +\subsection{\texorpdfstring{\textbf{How Excel Translates to +Python}}{How Excel Translates to Python}}\label{how-excel-translates-to-python} + +Here's how common Excel functionalities map to Python: + +\begin{longtable}[]{@{} + >{\raggedright\arraybackslash}p{(\columnwidth - 2\tabcolsep) * \real{0.2911}} + >{\raggedright\arraybackslash}p{(\columnwidth - 2\tabcolsep) * \real{0.7089}}@{}} +\toprule\noalign{} +\begin{minipage}[b]{\linewidth}\raggedright +\textbf{Excel Feature} +\end{minipage} & \begin{minipage}[b]{\linewidth}\raggedright +\textbf{Python Equivalent} +\end{minipage} \\ +\midrule\noalign{} +\endhead +\bottomrule\noalign{} +\endlastfoot +Formulas (SUM, AVERAGE) & \texttt{numpy}, \texttt{pandas} +(\texttt{df.sum()}, \texttt{df.mean()}) \\ +Sorting \& Filtering & \texttt{pandas.sort\_values()}, +\texttt{df{[}df{[}\textquotesingle{}col\textquotesingle{}{]}\ \textgreater{}\ value{]}} \\ +Conditional Formatting & \texttt{matplotlib} for highlighting \\ +Pivot Tables & \texttt{pandas.pivot\_table()} \\ +Charts \& Graphs & \texttt{matplotlib}, \texttt{seaborn}, +\texttt{plotly} \\ +Regression Analysis & \texttt{scipy.stats.linregress}, +\texttt{sklearn.linear\_model} \\ +Solver/Optimization & \texttt{scipy.optimize} \\ +VBA Macros & Python scripting with \texttt{openpyxl}, \texttt{pandas}, +or \texttt{xlwings} \\ +\end{longtable} + +\subsection{Statistical functions}\label{statistical-functions} + +\paragraph{SUM}\label{sum} + +Built-in: + +\begin{Shaded} +\begin{Highlighting}[] +\NormalTok{my\_array }\OperatorTok{=}\NormalTok{ [}\DecValTok{1}\NormalTok{, }\DecValTok{2}\NormalTok{, }\DecValTok{3}\NormalTok{, }\DecValTok{4}\NormalTok{, }\DecValTok{5}\NormalTok{]} +\NormalTok{total }\OperatorTok{=} \BuiltInTok{sum}\NormalTok{(my\_array)} +\BuiltInTok{print}\NormalTok{(total) }\CommentTok{\# Output: 15} +\end{Highlighting} +\end{Shaded} + +Numpy: + +\begin{Shaded} +\begin{Highlighting}[] +\ImportTok{import}\NormalTok{ numpy }\ImportTok{as}\NormalTok{ np} + +\NormalTok{my\_array }\OperatorTok{=}\NormalTok{ np.array([}\DecValTok{1}\NormalTok{, }\DecValTok{2}\NormalTok{, }\DecValTok{3}\NormalTok{, }\DecValTok{4}\NormalTok{, }\DecValTok{5}\NormalTok{])} +\NormalTok{total }\OperatorTok{=}\NormalTok{ np.}\BuiltInTok{sum}\NormalTok{(my\_array)} +\BuiltInTok{print}\NormalTok{(total) }\CommentTok{\# Output: 15} +\end{Highlighting} +\end{Shaded} + +\subsubsection{Average}\label{average} + +Built-in: + +\begin{Shaded} +\begin{Highlighting}[] +\NormalTok{my\_array }\OperatorTok{=}\NormalTok{ [}\DecValTok{1}\NormalTok{, }\DecValTok{2}\NormalTok{, }\DecValTok{3}\NormalTok{, }\DecValTok{4}\NormalTok{, }\DecValTok{5}\NormalTok{]} +\NormalTok{average }\OperatorTok{=} \BuiltInTok{sum}\NormalTok{(my\_array) }\OperatorTok{/} \BuiltInTok{len}\NormalTok{(my\_array)} +\BuiltInTok{print}\NormalTok{(average) }\CommentTok{\# Output: 3.0} +\end{Highlighting} +\end{Shaded} + +Numpy: + +\begin{Shaded} +\begin{Highlighting}[] +\ImportTok{import}\NormalTok{ numpy }\ImportTok{as}\NormalTok{ np} + +\NormalTok{my\_array }\OperatorTok{=}\NormalTok{ np.array([}\DecValTok{1}\NormalTok{, }\DecValTok{2}\NormalTok{, }\DecValTok{3}\NormalTok{, }\DecValTok{4}\NormalTok{, }\DecValTok{5}\NormalTok{])} +\NormalTok{average }\OperatorTok{=}\NormalTok{ np.mean(my\_array)} +\BuiltInTok{print}\NormalTok{(average) }\CommentTok{\# Output: 3.0} +\end{Highlighting} +\end{Shaded} + +\subsection{Plotting}\label{plotting} + +We can use the package \emph{matplotlib} to plot our graphs in python. +Matplotlib provides data visualization tools for the Scientific Python +Ecosystem. You can make very professional looking figures with this +tool. + +Here is a section from the matplotlib documentation page that you can +run in python. + +\begin{Shaded} +\begin{Highlighting}[] +\ImportTok{import}\NormalTok{ matplotlib.pyplot }\ImportTok{as}\NormalTok{ plt} + +\NormalTok{fig, ax }\OperatorTok{=}\NormalTok{ plt.subplots() }\CommentTok{\# Create a figure containing a single Axes.} +\NormalTok{ax.plot([}\DecValTok{1}\NormalTok{, }\DecValTok{2}\NormalTok{, }\DecValTok{3}\NormalTok{, }\DecValTok{4}\NormalTok{], [}\DecValTok{1}\NormalTok{, }\DecValTok{4}\NormalTok{, }\DecValTok{2}\NormalTok{, }\DecValTok{3}\NormalTok{]) }\CommentTok{\# Plot some data on the Axes.} +\NormalTok{plt.show() }\CommentTok{\# Show the figure.} +\end{Highlighting} +\end{Shaded} + +Check out the documentation pages for a +\href{https://matplotlib.org/stable/users/explain/quick_start.html\#a-simple-example}{simple +example} or more information on the types of plots you came create +\href{https://matplotlib.org/stable/plot_types/index.html}{here}. |
