summaryrefslogtreecommitdiff
path: root/tutorials/module_1/1_excel_to_python.md
diff options
context:
space:
mode:
Diffstat (limited to 'tutorials/module_1/1_excel_to_python.md')
-rw-r--r--tutorials/module_1/1_excel_to_python.md73
1 files changed, 73 insertions, 0 deletions
diff --git a/tutorials/module_1/1_excel_to_python.md b/tutorials/module_1/1_excel_to_python.md
new file mode 100644
index 0000000..2bf6a0d
--- /dev/null
+++ b/tutorials/module_1/1_excel_to_python.md
@@ -0,0 +1,73 @@
+# Excel to Python
+
+
+- Importing
+- Plotting
+- Statistical analysis
+
+
+
+## **How Excel Translates to Python**
+
+Here’s how common Excel functionalities map to Python:
+
+| **Excel Feature** | **Python Equivalent** |
+| ----------------------- | -------------------------------------------------------- |
+| Formulas (SUM, AVERAGE) | `numpy`, `pandas` (`df.sum()`, `df.mean()`) |
+| Sorting & Filtering | `pandas.sort_values()`, `df[df['col'] > value]` |
+| Conditional Formatting | `matplotlib` for highlighting |
+| Pivot Tables | `pandas.pivot_table()` |
+| Charts & Graphs | `matplotlib`, `seaborn`, `plotly` |
+| Regression Analysis | `scipy.stats.linregress`, `sklearn.linear_model` |
+| Solver/Optimization | `scipy.optimize` |
+| VBA Macros | Python scripting with `openpyxl`, `pandas`, or `xlwings` |
+
+## Statistical functions
+
+#### SUM
+Built-in:
+```python
+my_array = [1, 2, 3, 4, 5]
+total = sum(my_array)
+print(total) # Output: 15
+```
+Numpy:
+```python
+import numpy as np
+
+my_array = np.array([1, 2, 3, 4, 5])
+total = np.sum(my_array)
+print(total) # Output: 15
+```
+
+### Average
+Built-in:
+```python
+my_array = [1, 2, 3, 4, 5]
+average = sum(my_array) / len(my_array)
+print(average) # Output: 3.0
+```
+Numpy:
+```python
+import numpy as np
+
+my_array = np.array([1, 2, 3, 4, 5])
+average = np.mean(my_array)
+print(average) # Output: 3.0
+```
+
+
+
+## Plotting
+We can use the package *matplotlib* to plot our graphs in python. Matplotlib provides data visualization tools for the Scientific Python Ecosystem. You can make very professional looking figures with this tool.
+
+Here is a section from the matplotlib documentation page that you can run in python.
+```python
+import matplotlib.pyplot as plt
+
+fig, ax = plt.subplots() # Create a figure containing a single Axes.
+ax.plot([1, 2, 3, 4], [1, 4, 2, 3]) # Plot some data on the Axes.
+plt.show() # Show the figure.
+```
+
+Check out the documentation pages for a [simple example](https://matplotlib.org/stable/users/explain/quick_start.html#a-simple-example) or more information on the types of plots you came create [here](https://matplotlib.org/stable/plot_types/index.html). \ No newline at end of file