diff options
Diffstat (limited to 'tutorials')
| -rw-r--r-- | tutorials/module_3/README_offline_geogebra.txt | 56 | ||||
| -rw-r--r-- | tutorials/module_3/applications_examples.md | 38 | ||||
| -rw-r--r-- | tutorials/module_3/deployggb.js | 5 | ||||
| -rw-r--r-- | tutorials/module_3/example problems outline.md | 108 | ||||
| -rw-r--r-- | tutorials/module_3/geogebra-embed.html | 19 | ||||
| -rw-r--r-- | tutorials/module_3/geogebra-export.html | 56 | ||||
| -rw-r--r-- | tutorials/module_3/geogebra-newton-raphson.html | 56 | ||||
| -rw-r--r-- | tutorials/module_3/geogebra-offline.html | 56 |
8 files changed, 394 insertions, 0 deletions
diff --git a/tutorials/module_3/README_offline_geogebra.txt b/tutorials/module_3/README_offline_geogebra.txt new file mode 100644 index 0000000..f1b703f --- /dev/null +++ b/tutorials/module_3/README_offline_geogebra.txt @@ -0,0 +1,56 @@ +GeoGebra Offline Instructions +============================= + +Files created: +- geogebra-offline.html : Your original export modified to load a LOCAL deployggb.js +- geogebra-embed.html : A tiny wrapper that iframes geogebra-offline.html (handy for Jupyter or LMSes) +- README_offline_geogebra.txt : This file + +What you still need: +-------------------- +1) Download GeoGebra's loader script *once* and place it next to these HTML files as `deployggb.js`. + + Example commands (run in the same folder as the HTML files): + curl -L -o deployggb.js https://www.geogebra.org/apps/deployggb.js + or + wget -O deployggb.js https://www.geogebra.org/apps/deployggb.js + +2) (Optional but recommended for FULLY offline use): + The loader (deployggb.js) normally fetches additional runtime assets from geogebra.org. + For truly offline usage (no internet at all), you must also mirror/host the GeoGebra Web app + files it requests (the "apps" runtime) and change the internal base URL used by the loader. + The exact files and paths can change by version; a common approach is to: + - Inspect the network requests in your browser dev tools when the app loads online. + - Mirror those directories (often under something like /apps/ or /html5/). + - Serve them locally (same directory or a local web server) and adjust paths in the loader + or via a local web server rewrite to point to your mirrored copies. + + If 'deployggb.js' provides a configuration option for a base path, set it to your local copy. + Otherwise, you can host the mirrored assets on a local web server and keep the paths consistent. + +How to view locally: +-------------------- +- Double-click geogebra-embed.html (or open in a browser). Some browsers restrict file:// + JS; + using a local web server avoids this. For example: + + python3 -m http.server 8000 + + Then open: http://localhost:8000/geogebra-embed.html + +Using inside Jupyter: +--------------------- +Place the HTML files in the notebook's working directory (or a subfolder) and in a cell run: + + from IPython.display import IFrame + IFrame("geogebra-embed.html", width=920, height=660) + +Or inline the applet HTML directly (the contents of geogebra-offline.html) with: + + from IPython.display import HTML + HTML(open("geogebra-offline.html", "r", encoding="utf-8").read()) + +Notes: +------ +- If your Jupyter notebook is not "trusted", JavaScript may be blocked. Use "Trust Notebook". +- PDF export of notebooks won't preserve interactivity. Use HTML for sharing interactive content. +- If you restructure paths, keep the iframe 'src' updated accordingly. diff --git a/tutorials/module_3/applications_examples.md b/tutorials/module_3/applications_examples.md new file mode 100644 index 0000000..7ef1e15 --- /dev/null +++ b/tutorials/module_3/applications_examples.md @@ -0,0 +1,38 @@ +Here are some example problems: + +1. System of Linear Equations (Apply Kirchoff Law to find Voltage at Different Nodes):  + +You can say the diagram is for looking at a sensor network or signal conditioning network where the resistors acts as voltage dividers to control voltage and the current injection sources are say photodiodes. Then we say that determining the node voltages at A,B,C is required in order to design the next stage of the system (like amplifier biasing, etc). Or you can say that this is the electrical diagram of a low-voltage DC bus. Nodes A,B,C are junctions on a small DC bus in an instrument bay. The two current sources represent two current injections (a 2 A sensor bus feed and a 3 A subsystem), and the resistors represent harness + connector resistances and discrete loads to chassis ground. Solving node voltages tells you whether the bus voltages at junctions stay in safe/regulator range and how much power is dissipated in the harness. (edited) + +You can make another application where you have flow through a network of pipes. Basically any sort of network (fluid, thermal, electrical) would simplify to a system of linear equations when you go through it. + +here, I found one example on traffic flow for you: + + + +these are the sort of applications we can bake into our system of linear algebra. You can find a infinite amount of problems for linear systems starting from this idea of networks things going into nodes and out. + + +2. System of nonlinear equations. +I was just thinking of a silly problem right now but it gets the job done: make a computer screen with a diagonal of 16 inches and area of 180 square inches. What are the length and height of the monitor? so you have $Area=x*y$ and diagonal is $\sqrt{x^2+y^2}$. BAM! two nonlinear equations with two unknowns + +a problem involving heat transfer by radiation between two different components will also yields some kind of system of nonlinear equations. Say room A is heated and emits radiation Q but is also linked by conduction to room B which radiates to ambient find temp A and temp B +$$ +Q_1+k(T_2-T_1)-\sigma*(T_1^4-T_{inf}^4)=0 +$$ +$$ +Q_2+k(T_1-T_2)-\sigma*(T_2^2-T_{inf}^4)=0 +$$ + +3. ODE problem. +RC circuit problem. Say I have a fast photodiode (10ns scale) that generates a voltage that can be read on an oscope. Based on a given resistance and capacitance of the system (cable +oscope) what is the voltage vs time trace going to look like? v(t)=1-exp*-t/(RC) should be the solution + +4. ODEs system. +Say I have a model for a mass spring dampener to simulate a car's suspension. A car’s suspension is approximated by a single degree-of-freedom mass-spring-damper system. The displacement $x(t)$ of the spring mass satisfies: $mx''+cx'+kx=F(t)$. where $m$ is the mass, $c$ is the viscous damping and $k$ is the spring stiffness and $F$ is an external forcing. You need to convert this 2nd order ODE into two 1st order ODE, then you solve for both the position and velocity over time. + + +another kind of ODE system could be the Zeldovich system for NOx generation that you have learned in Combustion. + +you can make a system of 5 equations with 5 unknowns to solve for each of the species vs time: N2, O, O2, N, NO. + +it might be very stiff but we can make a toy system by adjusting the rates to make it easier to integrate using basic ODE solver methods like euler.
\ No newline at end of file diff --git a/tutorials/module_3/deployggb.js b/tutorials/module_3/deployggb.js new file mode 100644 index 0000000..f3a16b5 --- /dev/null +++ b/tutorials/module_3/deployggb.js @@ -0,0 +1,5 @@ +/* + @author: GeoGebra - Dynamic Mathematics for Everyone, http://www.geogebra.org + @license: This file is subject to the GeoGebra Non-Commercial License Agreement, see http://www.geogebra.org/license. For questions please write us at office@geogebra.org. +*/ +(function(){if(typeof window.GGBApplet=="function"){console.warn("deployggb.js was loaded twice");return}var isRenderGGBElementEnabled=false;var scriptLoadStarted=false;var html5AppletsToProcess=null;var ggbHTML5LoadedCodebaseIsWebSimple=false;var ggbHTML5LoadedCodebaseVersion=null;var ggbHTML5LoadedScript=null;var GGBApplet=function(){"use strict";var applet={};var ggbVersion="5.0";var parameters={};var views=null;var html5NoWebSimple=false;var html5NoWebSimpleParamExists=false;var appletID=null;var initComplete=false;var html5OverwrittenCodebaseVersion=null;var html5OverwrittenCodebase=null;for(var i=0;i<arguments.length;i++){var p=arguments[i];if(p!==null){switch(typeof p){case"number":ggbVersion=p.toFixed(1);break;case"string":if(p.match(new RegExp("^[0-9]\\.[0-9]+$"))){ggbVersion=p}else{appletID=p}break;case"object":if(typeof p.is3D!=="undefined"){views=p}else{parameters=p}break;case"boolean":html5NoWebSimple=p;html5NoWebSimpleParamExists=true;break}}}if(views===null){views={is3D:false,AV:false,SV:false,CV:false,EV2:false,CP:false,PC:false,DA:false,FI:false,PV:false,macro:false};if(parameters.material_id!==undefined&&!html5NoWebSimpleParamExists){html5NoWebSimple=true}}if(appletID!==null&¶meters.id===undefined){parameters.id=appletID}var jnlpFilePath="";var html5Codebase="";var isHTML5Offline=false;var loadedAppletType=null;var html5CodebaseVersion=null;var html5CodebaseScript=null;var html5CodebaseIsWebSimple=false;var previewImagePath=null;var previewLoadingPath=null;var previewPlayPath=null;var fonts_css_url=null;var jnlpBaseDir=null;var applet_api=null;if(parameters.height!==undefined){parameters.height=Math.round(parameters.height)}if(parameters.width!==undefined){parameters.width=Math.round(parameters.width)}var parseVersion=function(d){return parseFloat(d)>4?parseFloat(d):5};applet.setHTML5Codebase=function(codebase,offline){html5OverwrittenCodebase=codebase;setHTML5CodebaseInternal(codebase,offline)};applet.setJavaCodebase=applet.setJavaCodebaseVersion=applet.isCompiledInstalled=applet.setPreCompiledScriptPath=applet.setPreCompiledResourcePath=function(){};applet.setHTML5CodebaseVersion=function(version,offline){var numVersion=parseFloat(version);if(numVersion!==NaN&&numVersion<5){console.log("The GeoGebra HTML5 codebase version "+numVersion+" is deprecated. Using version latest instead.");return}html5OverwrittenCodebaseVersion=version;setDefaultHTML5CodebaseForVersion(version,offline)};applet.getHTML5CodebaseVersion=function(){return html5CodebaseVersion};applet.getParameters=function(){return parameters};applet.setFontsCSSURL=function(url){fonts_css_url=url};applet.setGiacJSURL=function(url){};applet.setJNLPFile=function(newJnlpFilePath){jnlpFilePath=newJnlpFilePath};applet.setJNLPBaseDir=function(baseDir){};applet.inject=function(){function isOwnIFrame(){return window.frameElement&&window.frameElement.getAttribute("data-singleton")}var type="auto";var container_ID=parameters.id;var container;var noPreview=false;for(var i=0;i<arguments.length;i++){var p=arguments[i];if(typeof p==="string"){p=p.toLowerCase();if(p.match(/^(prefer)?(java|html5|compiled|auto|screenshot)$/)){type=p}else{container_ID=arguments[i]}}else if(typeof p==="boolean"){noPreview=p}else if(p instanceof HTMLElement){container=p}}continueInject();function continueInject(){if(!initComplete){setTimeout(continueInject,200);return}type=detectAppletType(type);var appletElem=container||document.getElementById(container_ID);if(!appletElem){console.log("possibly bug on ajax loading? ");return}applet.removeExistingApplet(appletElem,false);if(parameters.width===undefined&&appletElem.clientWidth){parameters.width=appletElem.clientWidth}if(parameters.height===undefined&&appletElem.clientHeight){parameters.height=appletElem.clientHeight}if(!(parameters.width&¶meters.height)&&type==="html5"){delete parameters.width;delete parameters.height}loadedAppletType=type;if(type==="screenshot"){injectScreenshot(appletElem,parameters)}else{var playButton=false;if(parameters.hasOwnProperty("playButton")&¶meters.playButton||parameters.hasOwnProperty("clickToLoad")&¶meters.clickToLoad){playButton=true}else if(parameters.hasOwnProperty("playButtonAutoDecide")&¶meters.playButtonAutoDecide){playButton=(!isInIframe()||isOwnIFrame())&&isMobileDevice()}if(playButton){loadedAppletType="screenshot";injectPlayButton(appletElem,parameters,noPreview,type)}else{injectHTML5Applet(appletElem,parameters,noPreview)}}}return};function isInIframe(){try{return window.self!==window.top}catch(e){return true}}function isMobileDevice(){if(parameters.hasOwnProperty("screenshotGenerator")&¶meters.screenshotGenerator){return false}return Math.max(screen.width,screen.height)<800}applet.getViews=function(){return views};applet.isJavaInstalled=function(){return false};var fetchParametersFromApi=function(successCallback){var onSuccess=function(text){var jsonData=JSON.parse(text);var isGeoGebra=function(element){return element.type=="G"||element.type=="E"};var item=jsonData.elements?jsonData.elements.filter(isGeoGebra)[0]:jsonData;if(!item||!item.url){onError();return}parameters.fileName=item.url;updateAppletSettings(item.settings||{});views.is3D=true;var imageDir="https://www.geogebra.org/images/";applet.setPreviewImage(previewImagePath||item.previewUrl,imageDir+"GeoGebra_loading.png",imageDir+"applet_play.png");successCallback()};var onError=function(){parameters.onError&¶meters.onError();log("Error: Fetching material (id "+parameters.material_id+") failed.",parameters)};var host=location.host.match(/(www|stage|beta|groot|alpha).geogebra.(org|net)/)?location.host:"www.geogebra.org";var path="/materials/"+parameters.material_id+"?scope=basic";sendCorsRequest("https://"+host+"/api/proxy.php?path="+encodeURIComponent(path),onSuccess,onError)};function updateAppletSettings(settings){var parameterNames=["width","height","showToolBar","showMenuBar","showAlgebraInput","allowStyleBar","showResetIcon","enableLabelDrags","enableShiftDragZoom","enableRightClick","appName"];["enableLabelDrags","enableShiftDragZoom","enableRightClick"].forEach((function(name){settings[name]=!!settings[name]}));parameterNames.forEach((function(name){if(parameters[name]===undefined&&settings[name]!==undefined){parameters[name]=settings[name]}}));if(parameters.showToolBarHelp===undefined){parameters.showToolBarHelp=parameters.showToolBar}}function sendCorsRequest(url,onSuccess,onError){var xhr=new XMLHttpRequest;xhr.open("GET",url);xhr.onload=function(){onSuccess(xhr.responseText)};xhr.onerror=onError;xhr.send()}applet.isHTML5Installed=function(){return true};applet.getLoadedAppletType=function(){return loadedAppletType};applet.setPreviewImage=function(previewFilePath,loadingFilePath,playFilePath){previewImagePath=previewFilePath;previewLoadingPath=loadingFilePath;previewPlayPath=playFilePath};applet.removeExistingApplet=function(appletParent,showScreenshot){var i;if(typeof appletParent==="string"){appletParent=document.getElementById(appletParent)}loadedAppletType=null;var removedID=null;for(i=0;i<appletParent.childNodes.length;i++){var currentChild=appletParent.childNodes[i];var className=currentChild.className;if(className==="applet_screenshot"){if(showScreenshot){currentChild.style.display="block";loadedAppletType="screenshot"}else{currentChild.style.display="none"}}else if(className!=="applet_scaler prerender"){appletParent.removeChild(currentChild);removedID=className&&className.indexOf("appletParameters")!=-1?currentChild.id:null;i--}}var appName=parameters.id!==undefined?parameters.id:removedID;var app=window[appName];if(app&&typeof app.getBase64==="function"){app.remove();window[appName]=null}};applet.refreshHitPoints=function(){if(parseVersion(ggbHTML5LoadedCodebaseVersion)>=5){return true}var app=applet.getAppletObject();if(app){if(typeof app.recalculateEnvironments==="function"){app.recalculateEnvironments();return true}}return false};applet.startAnimation=function(){var app=applet.getAppletObject();if(app){if(typeof app.startAnimation==="function"){app.startAnimation();return true}}return false};applet.stopAnimation=function(){var app=applet.getAppletObject();if(app){if(typeof app.stopAnimation==="function"){app.stopAnimation();return true}}return false};applet.getAppletObject=function(){return applet_api};applet.resize=function(){};var appendParam=function(applet,name,value){var param=document.createElement("param");param.setAttribute("name",name);param.setAttribute("value",value);applet.appendChild(param)};var valBoolean=function(value){return value&&value!=="false"};var injectHTML5Applet=function(appletElem,parameters,noPreview){if(parseVersion(html5CodebaseVersion)<=4.2){noPreview=true}var loadScript=!isRenderGGBElementEnabled&&!scriptLoadStarted;if(!isRenderGGBElementEnabled&&!scriptLoadStarted||(ggbHTML5LoadedCodebaseVersion!==html5CodebaseVersion||ggbHTML5LoadedCodebaseIsWebSimple&&!html5CodebaseIsWebSimple)){loadScript=true;isRenderGGBElementEnabled=false;scriptLoadStarted=false}var article=document.createElement("div");article.classList.add("appletParameters","notranslate");var oriWidth=parameters.width;var oriHeight=parameters.height;parameters.disableAutoScale=parameters.disableAutoScale===undefined?GGBAppletUtils.isFlexibleWorksheetEditor():parameters.disableAutoScale;if(parameters.width!==undefined){if(parseVersion(html5CodebaseVersion)<=4.4){if(valBoolean(parameters.showToolBar)){parameters.height-=7}if(valBoolean(parameters.showAlgebraInput)){parameters.height-=37}if(parameters.width<605&&valBoolean(parameters.showToolBar)){parameters.width=605;oriWidth=605}}else{var minWidth=100;if(valBoolean(parameters.showToolBar)||valBoolean(parameters.showMenuBar)){if(parameters.hasOwnProperty("customToolBar")){parameters.customToolbar=parameters.customToolBar}minWidth=valBoolean(parameters.showMenuBar)?245:155}if(oriWidth<minWidth){parameters.width=minWidth;oriWidth=minWidth}}}article.style.border="none";article.style.display="inline-block";for(var key in parameters){if(parameters.hasOwnProperty(key)&&key!=="appletOnLoad"){article.setAttribute("data-param-"+key,parameters[key])}}if(fonts_css_url){article.setAttribute("data-param-fontscssurl",fonts_css_url)}applet.resize=function(){GGBAppletUtils.responsiveResize(appletElem,parameters)};window.addEventListener("resize",(function(evt){applet.resize()}));var oriAppletOnload=typeof parameters.appletOnLoad==="function"?parameters.appletOnLoad:function(){};if(!noPreview&¶meters.width!==undefined){if(!parameters.hasOwnProperty("showSplash")){article.setAttribute("data-param-showSplash","false")}var previewPositioner=appletElem.querySelector(".applet_scaler.prerender");var preRendered=previewPositioner!==null;if(!preRendered){var previewContainer=createScreenShotDiv(oriWidth,oriHeight,parameters.borderColor,false);previewPositioner=document.createElement("div");previewPositioner.className="applet_scaler";previewPositioner.style.position="relative";previewPositioner.style.display="block";previewPositioner.style.width=oriWidth+"px";previewPositioner.style.height=oriHeight+"px"}else{var previewContainer=previewPositioner.querySelector(".ggb_preview")}if(window.GGBT_spinner){window.GGBT_spinner.attachSpinner(previewPositioner,"66%")}if(parseVersion(html5CodebaseVersion)>=5){parameters.appletOnLoad=function(api){applet_api=api;var preview=appletElem.querySelector(".ggb_preview");if(preview){preview.parentNode.removeChild(preview)}if(window.GGBT_spinner){window.GGBT_spinner.removeSpinner(previewPositioner)}if(window.GGBT_wsf_view){$(window).trigger("resize")}oriAppletOnload(api)};if(!preRendered){previewPositioner.appendChild(previewContainer)}}else{article.appendChild(previewContainer)}previewPositioner.appendChild(article);if(!preRendered){appletElem.appendChild(previewPositioner)}setTimeout((function(){applet.resize()}),1)}else{var appletScaler=document.createElement("div");appletScaler.className="applet_scaler";appletScaler.style.position="relative";appletScaler.style.display="block";appletScaler.appendChild(article);appletElem.appendChild(appletScaler);parameters.appletOnLoad=function(api){applet.resize();oriAppletOnload(api)}}function renderGGBElementWithParams(article,parameters){if(parameters&&typeof parameters.appletOnLoad==="function"&&typeof renderGGBElement==="function"){renderGGBElement(article,parameters.appletOnLoad)}else{renderGGBElement(article)}log("GeoGebra HTML5 applet injected and rendered with previously loaded codebase.",parameters)}function renderGGBElementOnTube(a,parameters){if(typeof renderGGBElement==="undefined"){if(html5AppletsToProcess===null){html5AppletsToProcess=[]}html5AppletsToProcess.push({article:a,params:parameters});window.renderGGBElementReady=function(){isRenderGGBElementEnabled=true;if(html5AppletsToProcess!==null&&html5AppletsToProcess.length){html5AppletsToProcess.forEach((function(obj){renderGGBElementWithParams(obj.article,obj.params)}));html5AppletsToProcess=null}};if(parseVersion(html5CodebaseVersion)<5){a.className+=" geogebraweb"}}else{renderGGBElementWithParams(a,parameters)}}if(loadScript){scriptLoadStarted=true;for(var i=0;i<article.childNodes.length;i++){var tag=article.childNodes[i].tagName;if(tag==="TABLE"){article.removeChild(article.childNodes[i]);i--}}if(ggbHTML5LoadedScript!==null){var el=document.querySelector('script[src="'+ggbHTML5LoadedScript+'"]');if(el!==undefined&&el!==null){el.parentNode.removeChild(el)}}var script=document.createElement("script");var scriptLoaded=function(){renderGGBElementOnTube(article,parameters)};script.src=html5Codebase+html5CodebaseScript;ggbHTML5LoadedCodebaseIsWebSimple=html5CodebaseIsWebSimple;ggbHTML5LoadedCodebaseVersion=html5CodebaseVersion;ggbHTML5LoadedScript=script.src;log("GeoGebra HTML5 codebase loaded: '"+html5Codebase+"'.",parameters);if(!html5OverwrittenCodebase&&(!html5OverwrittenCodebaseVersion||html5OverwrittenCodebaseVersion=="5.0")){if(html5CodebaseIsWebSimple){webSimple.succeeded=webSimple.succeeded||webSimple()}else{web3d.succeeded=web3d.succeeded||web3d()}scriptLoaded()}else if(html5Codebase.requirejs){require(["geogebra/runtime/js/web3d/web3d.nocache"],scriptLoaded)}else{script.onload=scriptLoaded;appletElem.appendChild(script)}}else{renderGGBElementOnTube(article,parameters)}parameters.height=oriHeight;parameters.width=oriWidth};var injectScreenshot=function(appletElem,parameters,showPlayButton){var previewContainer=createScreenShotDiv(parameters.width,parameters.height,parameters.borderColor,showPlayButton);var previewPositioner=document.createElement("div");previewPositioner.style.position="relative";previewPositioner.style.display="block";previewPositioner.style.width=parameters.width+"px";previewPositioner.style.height=parameters.height+"px";previewPositioner.className="applet_screenshot applet_scaler"+(showPlayButton?" applet_screenshot_play":"");previewPositioner.appendChild(previewContainer);var scale=GGBAppletUtils.getScale(parameters,appletElem,showPlayButton);if(showPlayButton){appletElem.appendChild(getPlayButton());if(!window.GGBT_wsf_view){appletElem.style.position="relative"}}else if(window.GGBT_spinner){window.GGBT_spinner.attachSpinner(previewPositioner,"66%")}appletElem.appendChild(previewPositioner);if(scale!==1&&!isNaN(scale)){GGBAppletUtils.scaleElement(previewPositioner,scale);previewPositioner.style.width=parameters.width+"px";previewPositioner.style.height=parameters.height+"px";previewPositioner.parentNode.style.width=parameters.width*scale+"px";previewPositioner.parentNode.style.height=parameters.height*scale+"px"}applet.resize=function(){resizeScreenshot(appletElem,previewContainer,previewPositioner,showPlayButton)};window.addEventListener("resize",(function(evt){applet.resize()}));applet.resize()};function resizeScreenshot(appletElem,previewContainer,previewPositioner,showPlayButton){if(!appletElem.contains(previewContainer)){return}if(typeof window.GGBT_wsf_view==="object"&&window.GGBT_wsf_view.isFullscreen()){if(appletElem.id!=="fullscreencontent"){return}window.GGBT_wsf_view.setCloseBtnPosition(appletElem)}var scale=GGBAppletUtils.getScale(parameters,appletElem,showPlayButton);if(previewPositioner.parentNode!==null){if(!isNaN(scale)&&scale!==1){GGBAppletUtils.scaleElement(previewPositioner,scale);previewPositioner.parentNode.style.width=parameters.width*scale+"px";previewPositioner.parentNode.style.height=parameters.height*scale+"px"}else{GGBAppletUtils.scaleElement(previewPositioner,1);previewPositioner.parentNode.style.width=parameters.width+"px";previewPositioner.parentNode.style.height=parameters.height+"px"}}if(typeof window.GGBT_wsf_view==="object"&&window.GGBT_wsf_view.isFullscreen()){GGBAppletUtils.positionCenter(appletElem)}if(typeof window.GGBT_ws_header_footer==="object"){window.GGBT_ws_header_footer.setWsScrollerHeight()}}applet.onExitFullscreen=function(fullscreenContainer,appletElem){appletElem.appendChild(fullscreenContainer)};var injectPlayButton=function(appletElem,parameters,noPreview,type){injectScreenshot(appletElem,parameters,true);var play=function(){var elems=[];for(i=0;i<appletElem.childNodes.length;i++){elems.push(appletElem.childNodes[i])}if(window.GGBT_wsf_view){var content=window.GGBT_wsf_view.renderFullScreen(appletElem,parameters.id);var container=document.getElementById("fullscreencontainer");var oldcontent=jQuery(appletElem).find(".fullscreencontent");if(oldcontent.length>0){content.remove();oldcontent.attr("id","fullscreencontent").show();jQuery(container).append(oldcontent);window.dispatchEvent(new Event("resize"))}else{injectHTML5Applet(content,parameters,false)}window.GGBT_wsf_view.launchFullScreen(container)}else{loadedAppletType=type;injectHTML5Applet(appletElem,parameters,false)}if(!window.GGBT_wsf_view){for(i=0;i<elems.length;i++){appletElem.removeChild(elems[i])}}};var imgs=appletElem.getElementsByClassName("ggb_preview_play");for(var i=0;i<imgs.length;i++){imgs[i].addEventListener("click",play,false);imgs[i].addEventListener("ontouchstart",play,false)}if(typeof window.ggbAppletPlayerOnload==="function"){window.ggbAppletPlayerOnload(appletElem)}if(isMobileDevice()&&window.GGBT_wsf_view){$(".wsf-element-fullscreen-button").remove()}};var getPlayButton=function(){var playButtonContainer=document.createElement("div");playButtonContainer.className="ggb_preview_play icon-applet-play";if(!window.GGBT_wsf_view){var css=""+".icon-applet-play {"+" width: 100%;"+" height: 100%;box-sizing: border-box;position: absolute;z-index: 1001;cursor: pointer;border-width: 0px;"+" background-color: transparent;background-repeat: no-repeat;left: 0;top: 0;background-position: center center;"+' background-image: url("https://www.geogebra.org/images/worksheet/icon-start-applet.png");'+"}"+".icon-applet-play:hover {"+'background-image: url("https://www.geogebra.org/images/worksheet/icon-start-applet-hover.png");'+"}";var style=document.createElement("style");if(style.styleSheet){style.styleSheet.cssText=css}else{style.appendChild(document.createTextNode(css))}document.getElementsByTagName("head")[0].appendChild(style)}return playButtonContainer};var createScreenShotDiv=function(oriWidth,oriHeight,borderColor,showPlayButton){var previewContainer=document.createElement("div");previewContainer.className="ggb_preview";previewContainer.style.position="absolute";previewContainer.style.zIndex="90";previewContainer.style.width=oriWidth-2+"px";previewContainer.style.height=oriHeight-2+"px";previewContainer.style.top="0px";previewContainer.style.left="0px";previewContainer.style.overflow="hidden";previewContainer.style.backgroundColor="white";var bc="lightgrey";if(borderColor!==undefined){if(borderColor==="none"){bc="transparent"}else{bc=borderColor}}previewContainer.style.border="1px solid "+bc;var preview=document.createElement("img");preview.style.position="relative";preview.style.zIndex="1000";preview.style.top="-1px";preview.style.left="-1px";if(previewImagePath!==null){preview.setAttribute("src",previewImagePath)}preview.style.opacity=.7;if(previewLoadingPath!==null){var previewOverlay;var pWidth,pHeight;if(!showPlayButton){previewOverlay=document.createElement("img");previewOverlay.style.position="absolute";previewOverlay.style.zIndex="1001";previewOverlay.style.opacity=1;preview.style.opacity=.3;pWidth=360;if(pWidth>oriWidth/4*3){pWidth=oriWidth/4*3}pHeight=pWidth/5.8;previewOverlay.setAttribute("src",previewLoadingPath);previewOverlay.setAttribute("width",pWidth);previewOverlay.setAttribute("height",pHeight);var pX=(oriWidth-pWidth)/2;var pY=(oriHeight-pHeight)/2;previewOverlay.style.left=pX+"px";previewOverlay.style.top=pY+"px";previewContainer.appendChild(previewOverlay)}}previewContainer.appendChild(preview);return previewContainer};var detectAppletType=function(preferredType){preferredType=preferredType.toLowerCase();if(preferredType==="html5"||preferredType==="screenshot"){return preferredType}return"html5"};var modules=["web","webSimple","web3d","tablet","tablet3d","phone"];var setDefaultHTML5CodebaseForVersion=function(version,offline){html5CodebaseVersion=version;if(offline){setHTML5CodebaseInternal(html5CodebaseVersion,true);return}var hasWebSimple=!html5NoWebSimple;if(hasWebSimple){var v=parseVersion(html5CodebaseVersion);if(!isNaN(v)&&v<4.4){hasWebSimple=false}}var protocol,codebase;if(window.location.protocol.substr(0,4)==="http"){protocol=window.location.protocol}else{protocol="http:"}var index=html5CodebaseVersion.indexOf("//");if(index>0){codebase=html5CodebaseVersion}else if(index===0){codebase=protocol+html5CodebaseVersion}else{codebase="https://www.geogebra.org/apps/5.2.902.0/"}for(var key in modules){if(html5CodebaseVersion.slice(modules[key].length*-1)===modules[key]||html5CodebaseVersion.slice((modules[key].length+1)*-1)===modules[key]+"/"){setHTML5CodebaseInternal(codebase,false);return}}if(!GGBAppletUtils.isFlexibleWorksheetEditor()&&hasWebSimple&&!views.is3D&&!views.AV&&!views.SV&&!views.CV&&!views.EV2&&!views.CP&&!views.PC&&!views.DA&&!views.FI&&!views.PV&&!valBoolean(parameters.showToolBar)&&!valBoolean(parameters.showMenuBar)&&!valBoolean(parameters.showAlgebraInput)&&!valBoolean(parameters.enableRightClick)&&(!parameters.appName||parameters.appName=="classic")){codebase+="webSimple/"}else{codebase+="web3d/"}setHTML5CodebaseInternal(codebase,false)};var setHTML5CodebaseInternal=function(codebase,offline){if(codebase.requirejs){html5Codebase=codebase;return}if(codebase.slice(-1)!=="/"){codebase+="/"}html5Codebase=codebase;if(offline===null){offline=codebase.indexOf("http")===-1}isHTML5Offline=offline;html5CodebaseScript="web.nocache.js";html5CodebaseIsWebSimple=false;var folders=html5Codebase.split("/");if(folders.length>1){if(!offline&&folders[folders.length-2]==="webSimple"){html5CodebaseScript="webSimple.nocache.js";html5CodebaseIsWebSimple=true}else if(modules.indexOf(folders[folders.length-2])>=0){html5CodebaseScript=folders[folders.length-2]+".nocache.js"}}folders=codebase.split("/");html5CodebaseVersion=folders[folders.length-3];if(html5CodebaseVersion.substr(0,4)==="test"){html5CodebaseVersion=html5CodebaseVersion.substr(4,1)+"."+html5CodebaseVersion.substr(5,1)}else if(html5CodebaseVersion.substr(0,3)==="war"||html5CodebaseVersion.substr(0,4)==="beta"){html5CodebaseVersion="5.0"}var numVersion=parseFloat(html5CodebaseVersion);if(numVersion!==NaN&&numVersion<5&&codebase.indexOf("geogebra.org")>=0){console.log("The GeoGebra HTML5 codebase version "+numVersion+" is deprecated. Using version latest instead.");setDefaultHTML5CodebaseForVersion("5.0",offline)}};var log=function(text,parameters){if(window.console&&window.console.log){if(!parameters||typeof parameters.showLogging==="undefined"||parameters.showLogging&¶meters.showLogging!=="false"){console.log(text)}}};if(parameters.material_id!==undefined){fetchParametersFromApi(continueInit)}else{continueInit()}function continueInit(){var html5Version=ggbVersion;if(html5OverwrittenCodebaseVersion!==null){html5Version=html5OverwrittenCodebaseVersion}else{if(parseFloat(html5Version)<5){html5Version="5.0"}}setDefaultHTML5CodebaseForVersion(html5Version,false);if(html5OverwrittenCodebase!==null){setHTML5CodebaseInternal(html5OverwrittenCodebase,isHTML5Offline)}initComplete=true}return applet};var GGBAppletUtils=function(){"use strict";function isFlexibleWorksheetEditor(){return window.GGBT_wsf_edit!==undefined}function scaleElement(el,scale){if(scale!=1){el.style.transformOrigin="0% 0% 0px";el.style.webkitTransformOrigin="0% 0% 0px";el.style.transform="scale("+scale+","+scale+")";el.style.webkitTransform="scale("+scale+","+scale+")";el.style.maxWidth="initial";if(el.querySelector(".ggb_preview")!==null){el.querySelector(".ggb_preview").style.maxWidth="initial"}if(el.querySelectorAll(".ggb_preview img")[0]!==undefined){el.querySelectorAll(".ggb_preview img")[0].style.maxWidth="initial"}if(el.querySelectorAll(".ggb_preview img")[1]!==undefined){el.querySelectorAll(".ggb_preview img")[1].style.maxWidth="initial"}}else{el.style.transform="none";el.style.webkitTransform="none"}}function getWidthHeight(appletElem,appletWidth,allowUpscale,autoHeight,noBorder,scaleContainerClass){var container=null;if(scaleContainerClass!=undefined&&scaleContainerClass!=""){var parent=appletElem.parentNode;while(parent!=null){if((" "+parent.className+" ").indexOf(" "+scaleContainerClass+" ")>-1){container=parent;break}else{parent=parent.parentNode}}}var myWidth=0,myHeight=0,windowWidth=0,border=0,borderRight=0,borderLeft=0,borderTop=0;if(container){myWidth=container.offsetWidth;myHeight=Math.max(autoHeight?container.offsetWidth:0,container.offsetHeight)}else{if(window.innerWidth&&document.documentElement.clientWidth){myWidth=Math.min(window.innerWidth,document.documentElement.clientWidth);myHeight=Math.min(window.innerHeight,document.documentElement.clientHeight);windowWidth=myWidth}else{myWidth=window.innerWidth;myHeight=window.innerHeight;windowWidth=window.innerWidth}if(appletElem){var rect=appletElem.getBoundingClientRect();if(rect.left>0){if(rect.left<=myWidth&&(noBorder===undefined||!noBorder)){if(document.dir==="rtl"){borderRight=myWidth-rect.width-rect.left;borderLeft=windowWidth<=480?10:30}else{borderLeft=rect.left;borderRight=windowWidth<=480?10:30}border=borderLeft+borderRight}}}if(appletElem&&typeof window.GGBT_wsf_view==="object"&&window.GGBT_wsf_view.isFullscreen()){var appletRect=appletElem.getBoundingClientRect();if(window.GGBT_wsf_view.getCloseBtnPosition()==="closePositionRight"){border=40;borderTop=0}else if(window.GGBT_wsf_view.getCloseBtnPosition()==="closePositionTop"){border=0;borderTop=40}}}if(appletElem){if((allowUpscale===undefined||!allowUpscale)&&appletWidth>0&&appletWidth+border<myWidth){myWidth=appletWidth}else{myWidth-=border}if(typeof window.GGBT_wsf_view==="object"&&window.GGBT_wsf_view.isFullscreen()&&(allowUpscale===undefined||!allowUpscale)){myHeight-=borderTop}}return{width:myWidth,height:myHeight}}function calcScale(parameters,appletElem,allowUpscale,showPlayButton,scaleContainerClass){if(parameters.isScreenshoGenerator){return 1}var ignoreHeight=showPlayButton!==undefined&&showPlayButton;var noScaleMargin=parameters.noScaleMargin!=undefined&¶meters.noScaleMargin;var valBoolean=function(value){return value&&value!=="false"};var autoHeight=valBoolean(parameters.autoHeight);var windowSize=getWidthHeight(appletElem,parameters.width,allowUpscale,autoHeight,ignoreHeight&&window.GGBT_wsf_view||noScaleMargin,scaleContainerClass);var windowWidth=parseInt(windowSize.width);var appletWidth=parameters.width;var appletHeight=parameters.height;if(appletWidth===undefined){var article=appletElem.querySelector(".appletParameters");if(article){appletWidth=article.offsetWidth;appletHeight=article.offsetHeight}}var xscale=windowWidth/appletWidth;var yscale=ignoreHeight?1:windowSize.height/appletHeight;if(allowUpscale!==undefined&&!allowUpscale){xscale=Math.min(1,xscale);yscale=Math.min(1,yscale)}return Math.min(xscale,yscale)}function getScale(parameters,appletElem,showPlayButton){var scale=1,autoScale,allowUpscale=false;if(parameters.hasOwnProperty("allowUpscale")){allowUpscale=parameters.allowUpscale}if(parameters.hasOwnProperty("scale")){scale=parseFloat(parameters.scale);if(isNaN(scale)||scale===null||scale===0){scale=1}if(scale>1){allowUpscale=true}}if(appletElem&&typeof window.GGBT_wsf_view==="object"&&window.GGBT_wsf_view.isFullscreen()){allowUpscale=true}if(!(parameters.hasOwnProperty("disableAutoScale")&¶meters.disableAutoScale)){autoScale=calcScale(parameters,appletElem,allowUpscale,showPlayButton,parameters.scaleContainerClass)}else{return scale}if(allowUpscale&&(!parameters.hasOwnProperty("scale")||scale===1)){return autoScale}else{return Math.min(scale,autoScale)}}function positionCenter(appletElem){var windowWidth=Math.min(window.innerWidth,document.documentElement.clientWidth);var windowHeight=Math.min(window.innerHeight,document.documentElement.clientHeight);var appletRect=appletElem.getBoundingClientRect();var calcHorizontalBorder=(windowWidth-appletRect.width)/2;var calcVerticalBorder=(windowHeight-appletRect.height)/2;if(calcVerticalBorder<0){calcVerticalBorder=0}appletElem.style.position="relative";if(window.GGBT_wsf_view.getCloseBtnPosition()==="closePositionRight"){if(calcHorizontalBorder<40){appletElem.style.left="40px"}else{appletElem.style.left=calcHorizontalBorder+"px"}appletElem.style.top=calcVerticalBorder+"px"}else if(window.GGBT_wsf_view.getCloseBtnPosition()==="closePositionTop"){if(calcVerticalBorder<40){appletElem.style.top="40px"}else{appletElem.style.top=calcVerticalBorder+"px"}appletElem.style.left=calcHorizontalBorder+"px"}}function responsiveResize(appletElem,parameters){var article=appletElem.querySelector(".appletParameters");if(article){if(typeof window.GGBT_wsf_view==="object"&&window.GGBT_wsf_view.isFullscreen()){if(parameters.id!==article.getAttribute("data-param-id")){return}window.GGBT_wsf_view.setCloseBtnPosition(appletElem)}if(article.parentElement&&/fullscreen/.test(article.parentElement.className)){return}var scale=getScale(parameters,appletElem);if(isFlexibleWorksheetEditor()){article.setAttribute("data-param-scale",scale)}var scaleElem=null;for(var i=0;i<appletElem.childNodes.length;i++){if(appletElem.childNodes[i].className!==undefined&&appletElem.childNodes[i].className.match(/^applet_scaler/)){scaleElem=appletElem.childNodes[i];break}}if(scaleElem!==null&&scaleElem.querySelector(".noscale")!==null){return}var appName=parameters.id!==undefined?parameters.id:"ggbApplet";var app=window[appName];if((app==null||!app.recalculateEnvironments)&&scaleElem!==null&&!scaleElem.className.match(/fullscreen/)){scaleElem.parentNode.style.transform="";if(!isNaN(scale)&&scale!==1){scaleElem.parentNode.style.width=parameters.width*scale+"px";scaleElem.parentNode.style.height=parameters.height*scale+"px";scaleElement(scaleElem,scale)}else{scaleElement(scaleElem,1);scaleElem.parentNode.style.width=parameters.width+"px";scaleElem.parentNode.style.height=parameters.height+"px"}}if(typeof window.GGBT_wsf_view==="object"&&window.GGBT_wsf_view.isFullscreen()){positionCenter(appletElem)}if(window.GGBT_wsf_view&&!window.GGBT_wsf_view.isFullscreen()){window.GGBT_wsf_general.adjustContentToResize($(article).parents(".content-added-content"))}}}return{responsiveResize:responsiveResize,isFlexibleWorksheetEditor:isFlexibleWorksheetEditor,positionCenter:positionCenter,getScale:getScale,scaleElement:scaleElement}}();if(typeof define==="function"&&define.amd){define([],(function(){return GGBApplet}))}GGBAppletUtils.makeModule=function(name,permutation){function webModule(){var H="bootstrap",I="begin",J="gwt.codesvr."+name+"=",K="gwt.codesvr=",L=name,M="startup",N="DUMMY",O=0,P=1,Q="iframe",R="position:absolute; width:0; height:0; border:none; left: -1000px;",S=" top: -1000px;",T="Chrome",U="CSS1Compat",V="<!doctype html>",W="",X="<html><head></head><body></body></html>",Y="undefined",Z="readystatechange",$=10,_="script",ab="javascript",bb="Failed to load ",cb="moduleStartup",db="scriptTagAdded",eb="moduleRequested",fb="meta",gb="name",hb=name+"::",ib="::",jb="gwt:property",kb="content",lb="=",mb="gwt:onPropertyErrorFn",nb='Bad handler "',ob='" for "gwt:onPropertyErrorFn"',pb="gwt:onLoadErrorFn",qb='" for "gwt:onLoadErrorFn"',rb="#",sb="?",tb="/",ub="img",vb="clear.cache.gif",wb="baseUrl",xb=name+".nocache.js",yb="base",zb="//",Ab="selectingPermutation",Bb=name+".devmode.js",Cb=permutation,Db=":",Eb=".cache.js",Fb="loadExternalRefs",Gb="end";var n=window;var o=document;q(H,I);function p(){var a=n.location.search;return a.indexOf(J)!=-1||a.indexOf(K)!=-1}function q(a,b){}webModule.__sendStats=q;webModule.__moduleName=L;webModule.__errFn=null;webModule.__moduleBase=N;webModule.__softPermutationId=O;webModule.__computePropValue=null;webModule.__getPropMap=null;webModule.__installRunAsyncCode=function(){};webModule.__gwtStartLoadingFragment=function(){return null};webModule.__gwt_isKnownPropertyValue=function(){return false};webModule.__gwt_getMetaProperty=function(){return null};var r=null;var s=n.__gwt_activeModules=n.__gwt_activeModules||{};s[L]={moduleName:L};webModule.__moduleStartupDone=function(e){var f=s[L].bindings;s[L].bindings=function(){var a=f?f():{};var b=e[webModule.__softPermutationId];for(var c=O;c<b.length;c++){var d=b[c];a[d[O]]=d[P]}return a}};var t;function u(){v();return t}function v(){if(t){return}var a=o.createElement(Q);a.id=L;a.style.cssText=R+S;a.tabIndex=-1;o.body.appendChild(a);t=a.contentWindow.document;if(navigator.userAgent.indexOf(T)==-1){t.open();var b=document.compatMode==U?V:W;t.write(b+X);t.close()}}function w(f){function g(a){function b(){if(typeof o.readyState==Y){return typeof o.body!=Y&&o.body!=null}return/loaded|complete/.test(o.readyState)}var c=b();if(c){a();return}function d(){if(!c){if(!b()){return}c=true;a();if(o.removeEventListener){o.removeEventListener(Z,d,false)}if(e){clearInterval(e)}}}if(o.addEventListener){o.addEventListener(Z,d,false)}var e=setInterval((function(){d()}),$)}function h(a){var b=u();var c=b.body;var d=b.createElement(_);d.language=ab;d.crossOrigin=W;d.src=a;if(webModule.__errFn){d.onerror=function(){webModule.__errFn(L,new Error(bb+a))}}c.appendChild(d);q(cb,db)}q(cb,eb);g((function(){h(f)}))}webModule.__startLoadingFragment=function(a){return C(a)};webModule.__installRunAsyncCode=function(a){var b=u();var c=b.body;var d=b.createElement(_);d.language=ab;d.text=a;c.appendChild(d);c.removeChild(d)};function A(){var c={};var d;var e;var f=o.getElementsByTagName(fb);for(var g=O,h=f.length;g<h;++g){var i=f[g],j=i.getAttribute(gb),k;if(j){j=j.replace(hb,W);if(j.indexOf(ib)>=O){continue}if(j==jb){k=i.getAttribute(kb);if(k){var l,m=k.indexOf(lb);if(m>=O){j=k.substring(O,m);l=k.substring(m+P)}else{j=k;l=W}c[j]=l}}else if(j==mb){k=i.getAttribute(kb);if(k){try{d=eval(k)}catch(a){alert(nb+k+ob)}}}else if(j==pb){k=i.getAttribute(kb);if(k){try{e=eval(k)}catch(a){alert(nb+k+qb)}}}}}__gwt_getMetaProperty=function(a){var b=c[a];return b==null?null:b};r=d;webModule.__errFn=e}function B(){function e(a){var b=a.lastIndexOf(rb);if(b==-1){b=a.length}var c=a.indexOf(sb);if(c==-1){c=a.length}var d=a.lastIndexOf(tb,Math.min(c,b));return d>=O?a.substring(O,d+P):W}function f(a){if(a.match(/^\w+:\/\//)){}else{var b=o.createElement(ub);b.src=a+vb;a=e(b.src)}return a}function g(){var a=__gwt_getMetaProperty(wb);if(a!=null){return a}return W}function h(){var a=o.getElementsByTagName(_);for(var b=O;b<a.length;++b){if(a[b].src.indexOf(xb)!=-1){return e(a[b].src)}}return W}function i(){var a=o.getElementsByTagName(yb);if(a.length>O){return a[a.length-P].href}return W}function j(){var a=o.location;return a.href==a.protocol+zb+a.host+a.pathname+a.search+a.hash}var k=g();if(k==W){k=h()}if(k==W){k=i()}if(k==W&&j()){k=e(o.location.href)}k=f(k);return k}function C(a){if(a.match(/^\//)){return a}if(a.match(/^[a-zA-Z]+:\/\//)){return a}return webModule.__moduleBase+a}function D(){var f=[];var g=O;var h=[];var i=[];function j(a){var b=i[a](),c=h[a];if(b in c){return b}var d=[];for(var e in c){d[c[e]]=e}if(r){r(a,d,b)}throw null}__gwt_isKnownPropertyValue=function(a,b){return b in h[a]};webModule.__getPropMap=function(){var a={};for(var b in h){if(h.hasOwnProperty(b)){a[b]=j(b)}}return a};webModule.__computePropValue=j;n.__gwt_activeModules[L].bindings=webModule.__getPropMap;if(p()){return C(Bb)}var k;try{k=Cb;var l=k.indexOf(Db);if(l!=-1){g=parseInt(k.substring(l+P),$);k=k.substring(O,l)}}catch(a){}webModule.__softPermutationId=g;return C(k+Eb)}function F(){if(!n.__gwt_stylesLoaded){n.__gwt_stylesLoaded={}}}A();webModule.__moduleBase="https://www.geogebra.org/apps/5.2.902.0/"+name+"/";s[L].moduleBase=webModule.__moduleBase;var G=D();F();w(G);return true}return webModule};if(typeof window.web3d!=="function"){window.web3d=GGBAppletUtils.makeModule("web3d","F53FE8BEA7AD8AA8B3471691A5855129")}if(typeof window.webSimple!=="function"){window.webSimple=GGBAppletUtils.makeModule("webSimple","455074C58222430256F53176A4B9988B")}window.GGBApplet=GGBApplet})();
\ No newline at end of file diff --git a/tutorials/module_3/example problems outline.md b/tutorials/module_3/example problems outline.md new file mode 100644 index 0000000..42a0554 --- /dev/null +++ b/tutorials/module_3/example problems outline.md @@ -0,0 +1,108 @@ + +### **Module 2: Algorithm Developments for Mechanical Engineering** + +* **Numerical Methods** + 1. Beam deflection solved with `numpy.linalg.solve` (Statics/Structures) + 2. Cooling of a hot plate with `scipy.integrate.odeint` (Thermal sciences) + +* **Version Control** + 1. Git workflow on a bike frame design project (Solid mechanics / FEA data) + 2. Collaborative control system simulation (PID tuning in Python) + +* **Problem Solving Strategies** + 1. Break down multi-step dynamics problem: projectile with drag (Dynamics/Fluids) + 2. Decompose Rankine cycle analysis into modular Python functions (Thermo/Power cycles) + +* **Code Documentation** + 1. Document a function that computes stress concentration factor (Solid mechanics) + 2. Document a PID control simulation for DC motor speed (Mechatronics/Controls) + +* **Code Libraries & Resources** + 1. Use `matplotlib` + `numpy` for plotting vibration response of a 2-DOF spring-mass system (Dynamics) + 2. Use `CoolProp` for real gas property lookup (Thermo/Fluids) + +* **AI-Assisted Programming** + 1. Have AI draft code for a 1D heat conduction simulation, then debug/validate (Heat Transfer) + 2. Generate starter code for stress-strain curve fitting, then refine it (Solid Mechanics) + +* **Verification & Validation** + 1. Compare hand solution vs. Python solution of a static truss (Statics/Structures) + 2. Validate simulated temperature profile in a fin against analytical solution (Heat Transfer) + +* **Error** + 1. Show truncation error in numerical derivative of displacement data (Dynamics experiment) + 2. Compare Simpson’s rule vs trapezoidal integration for work done in P–V diagram (Thermo) + +### **Module 3: Applications of Computational Mathematics in Mechanical Engineering** + +#### **Linear Equations** + +* **Lecture: Linear Equations** + 1. Solve a 3-bar truss reaction forces system (Statics/Structures) + 2. Solve nodal voltages in a resistive electrical network (Mechatronics) + +* **Lecture: Linear Algebra** + 1. Stress transformation with rotation matrices (Solid Mechanics) + 2. Velocity transformation in 2D robotic arm kinematics (Mechatronics/Robotics) + +* **Lecture: LU Decomposition** + 1. Discretized fin heat conduction (Heat Transfer) + 2. 1D beam bending using finite difference discretization (Simple FEA) + +#### **Non-Linear Equations** + +* **Lecture: Bracketing Methods** + 1. Equilibrium temperature with radiation + convection balance (Heat Transfer) + 2. Solve spring-mass system with nonlinear stiffness (Solid Mechanics) + +* **Lecture: Open Methods** + 1. Mach number from nozzle area ratio (Aerospace/Compressible Flow) + 2. Natural frequency from transcendental vibration equation (Dynamics) + +* **Lecture: Systems of Nonlinear Equations I** + 1. Chemical equilibrium composition (Thermo) + 2. Solve coupled force/displacement in nonlinear truss (Structures) + +* **Lecture: Systems of Nonlinear Equations II** + 1. Lift & drag coefficients from nonlinear aerodynamic model (Aerospace) + 2. Nonlinear motor torque & current equations (Mechatronics/Controls) + +#### **Numerical Differentiation & Integration** +* **Lecture: Differentiation** + 1. Estimate velocity/acceleration from piston displacement data (Dynamics) + 2. Approximate strain rate from stress–strain curve (Solid Mechanics) + +* **Lecture: Integration** + 1. Work from P–V data (Thermo) + 2. Area under vibration response curve for damping energy loss (Dynamics/Controls) + +#### **ODEs** + +* **Lecture: Explicit Methods** + 1. Cooling of hot sphere (Newton’s law of cooling) (Heat Transfer) + 2. Pendulum motion (small vs. large angle) (Dynamics) + +* **Lecture: Implicit Methods** + 1. Transient 1D heat conduction (Heat Transfer) + 2. Mass-spring-damper under step input (Dynamics/Controls) + +* **Lecture: Systems of ODEs** + 1. Coupled tanks draining problem (Fluids) + 2. 2-DOF vibration system (Solid Mechanics/Dynamics) + +#### **PDEs** +* **Lecture: Elliptic PDEs (Finite Difference)** + 1. 2D steady-state conduction in a plate (Heat Transfer) + 2. Deflection of a membrane under load (Structures/FEA) + +* **Lecture: Parabolic/Hyperbolic PDEs (Finite Difference)** + 1. 1D transient conduction (Heat Transfer) + 2. Vibrating string or beam (Dynamics/Aerospace structures) + + +* Statics/Structures → Truss, beams, stresses +* Dynamics → Vibrations, pendulum, projectile, damping +* Solid Mechanics → Stress/strain, nonlinear springs +* Thermo/Fluids/Heat → Cooling, P–V, conduction, radiation +* FEA → simple discretized beams/fins/plates +* Mechatronics/Controls → motor dynamics, robotic arms, PID
\ No newline at end of file diff --git a/tutorials/module_3/geogebra-embed.html b/tutorials/module_3/geogebra-embed.html new file mode 100644 index 0000000..92331cb --- /dev/null +++ b/tutorials/module_3/geogebra-embed.html @@ -0,0 +1,19 @@ +<!doctype html> +<html> + <head> + <meta charset="utf-8"> + <meta name="viewport" content="width=device-width,initial-scale=1"> + <title>GeoGebra IFrame Wrapper</title> + <style> + html,body{height:100%;margin:0} + .wrap{display:flex;align-items:center;justify-content:center;height:100%;} + iframe{border:0;width:900px;height:620px;max-width:100%;} + </style> + </head> + <body> + <div class="wrap"> + <!-- Point src to the offline HTML next to this file (or a URL) --> + <iframe src="geogebra-offline.html" title="GeoGebra Applet"></iframe> + </div> + </body> +</html> diff --git a/tutorials/module_3/geogebra-export.html b/tutorials/module_3/geogebra-export.html new file mode 100644 index 0000000..7486bd5 --- /dev/null +++ b/tutorials/module_3/geogebra-export.html @@ -0,0 +1,56 @@ +<!DOCTYPE html> +<html> +<head> +<meta name=viewport content="width=device-width,initial-scale=1"> +<meta charset="utf-8"/> +<script src="https://www.geogebra.org/apps/deployggb.js"></script> + +</head> +<body> +<div id="ggbApplet"></div> + +<script> +var parameters = { +"id": "ggbApplet", +"width":858, +"height":590, +"showMenuBar":true, +"showAlgebraInput":true, +"showToolBar":true, +"customToolBar":"0 39 59 || 1 501 67 , 5 19 , 72 | 2 15 45 , 18 65 , 7 37 | 4 3 8 9 , 13 44 , 58 , 47 || 16 51 64 , 70 | 10 34 53 11 , 24 20 22 , 21 23 | 55 56 57 , 12 || 36 46 , 38 49 50 , 71 | 30 29 54 32 31 33 | 17 26 62 , 14 66 68 | 25 52 60 61 || 40 41 42 , 27 28 35 , 6", +"showToolBarHelp":true, +"showResetIcon":false, +"enableLabelDrags":false, +"enableShiftDragZoom":true, +"enableRightClick":false, +"errorDialogsActive":false, +"useBrowserForJS":false, +"allowStyleBar":false, +"preventFocus":false, +"showZoomButtons":true, +"capturingThreshold":3, +// add code here to run when the applet starts +"appletOnLoad":function(api){ /* api.evalCommand('Segment((1,2),(3,4))');*/ }, +"showFullscreenButton":true, +"scale":1, +"disableAutoScale":false, +"allowUpscale":false, +"clickToLoad":false, +"appName":"classic", +"buttonRounding":0.7, +"buttonShadows":false, +"language":"en-GB", +// use this instead of ggbBase64 to load a material from geogebra.org +// "material_id":"RHYH3UQ8", +// use this instead of ggbBase64 to load a .ggb file +// "filename":"myfile.ggb", +"ggbBase64":"UEsDBBQAAAAIANN4UVug+zS4KQUAAKwmAAAXAAAAZ2VvZ2VicmFfZGVmYXVsdHMyZC54bWztWt1y4jYUvu4+hUZX7UXANjjATrw72Z3pNDPZ7E6T6fRWGGHUCMm15AB5+h5JxjYh5MfABrrLBfKR9Xe+7+joSPLZx/mUozuaKSZFhP2WhxEVsRwxkUQ41+OTPv744d1ZQmVChxlBY5lNiY5waEqW9cJW0Bp4HZNH0jTCMSdKsRijlBNtqkR4hhGaK/ZeyCsypSolMb2OJ3RKLmVMtG1lonX6vt2ezWatZX8tmSVtaFK152rUThLdghQjGLRQES4e3kO7K7VnHVsv8Dy//feXS9fPCRNKExFTjEChER2TnGsFj5TTKRUa6UVKI5xKJjRGnAwpj/A3I6Ffxxmlv2FUVAKcPPzh3S9naiJnSA7/oTHk6SyHpot6VmibMvD6s+QyQ1mEez2MAFaTDCMchCHAxdMJibDnCnOyoBm6I9BCkUNyLWNb3+aOCVdFw7anL3JE3ZtuUV4w4AfgREpTYMJr+RiplNIRjBoXOsIDELOwHNdatKpfs/uixbCeqxe8yC4GFkuZjRSaR/iKXGG0KNJ7l0KRs3YB7MsgHtGUihEUWsHZb4SzD/wYoH1vYJH2/cNGumjxTZE+PR6kd40z6LAHoL+KOrxBM3gDgNPAa9KfLmMF3wvxJ01g1HWUO8eD8lFgvGrD3UboOgcB/4eHrAXLYajMPwQucppyOv++wHMmKhAvrVCCHjSLNOqgm6DsLVwG9PsY6EZbB5+esPhWUAWRHJhFWck8/MFGsELZxiSEikwDnn6v71qg/4oV0hhwxqDM1kSMcxEbrUpwP+fZXZ2NTtd7Cz6qNhvPgD2RsRlLRRMjlbhcL+XKtJsFdz+wactcc9PphdCw8wLAYJhqTa9bStMb6OiruMmIUGb79dCMYCOU1X1YwUkxBlH4xPVXW8ytjCyesoXwGGzhf2gJO/CW4o5kJU91TptFYxvjhRYYyRsT+4qlow7E9oHTMRv3VkZ02swxBF73cfRavQM2ojtQT1Yw/FWIVfhxFMHg9/SSj0TwsLJRxYjYwX6IL5LajP62lEs+eo6P7dXYzGgNrZUta9ixpIbQ3AMD9z3387sDz/dP4eThYO3dILyy+TEQu4wKYxcl7hPjg5g1r4kzm4Vvm3mIpTCH9ctNj5NKBro/vc6rYjPKEiqcKwfH49k2FpBAy/dGMrckc9/KC0jg7b1JINtWB60yNkfnrsa5K3geuKTjkq5LwgK9Z5hNwVpqsfeDRaXb8Iz9iDzQEcXjh2Q8Ip/SrOYYrpZyaTuhcw2gQ756GqY4GwHZUwZwngDOUwIrsInlh0ryXMPVH9yoierqzxncjI30xARvML4xmxtiHXpoIjN2L4UuwULGXs+5vSR8nungqeD0RW5rk1FvNuGasW63ShKR8Go2njuposDdLNhC66eSTzMDA7HEnLaCfsfvhx2v5/cGYf/0hUT5/Yoo92JLnjbNSOBvfUaSLK4OZyE03kAlELdTMovV2vN73bATDILQHwy68ABj3/Ue8vcyo9oPNVuMg77FwiQARQdGuOMjSGsFa0X3drrIZZyr6szcSSVIYJaNouqtUdrjCkbyOeOMZIv1nvaGsqbzKnC4sULtE4gDDAs3qwKwJ9XQLpxU+87AKTNmgKKA71PgDMJ2wsQnEt8mmcxFYd31MHwnqhdr0CHuz4ZScgo76aVan5Zy7V57LQLYBFCxku/XTT0LEnwKFN8O5Xxl2Xrmdk5Vk+DSCrUL50cmwUsU3bQ0nby5NTQ53nvlVemjsUqdgHbt66z28lOwD/8BUEsDBBQAAAAIANN4UVvNB6dXdwMAAGARAAAXAAAAZ2VvZ2VicmFfZGVmYXVsdHMzZC54bWztWM1y0zAQPsNTaHTHP7Gd1p26TAYOMAMMDBeuqr1JBI5kJCWO+2q8A8/E6qetAwWaTihTBh+8kta7K337eS359Ol21ZINKM2lqGgaJZSAqGXDxaKiazN/ckyfnj0+XYBcwLliZC7VipmKFvbJK7simkRlktkx1nUVrVumNa8p6VpmrElFe0rIVvMTId+wFeiO1fC+XsKKvZI1M87L0pjuJI77vo8u40VSLWJ0qeOtbuLFwkQoKcFJC13R0DhBvzvWfebsJkmSxh9ev/JxnnChDRM1UIILamDO1q3R2IQWViAMMUMHOHUpeJ1hjJadQ1vRl8LgKqG2UyT1Wm3QPhhXNEuLhJ49fnRaS6kaTeS2ooiBHLy48KJHYBEsr9t43cbrej/Y+8HeDcbWoV7Knsjzjxi4okatMWqYkOu4Z1D9TLZSEVXRCUbAjKUJynOU5QRT0XZLhh6jNPFXmpdJmk7Tibdv2QCKbBg6DVHZ2sjauXSjc9bqEMsFfy0b8Jo8PC84ssEiow1g3jG47gAa1/J44rKQBIPj09gfF/DeDC0Qs+T1JwEa81mMjGzjBW8asLT0NvBZeBNt7xXtmEIqGYVE83q+ALFBxKTSZJu4SQwo0NuF7Vl6blPXH1Cg9sIKHHbmuBLFt2TmLWb+wdnEi8yL3IsiIHYaB/L8QCO25Tp7fpW0WeiOmJNkjjn7JhrDI5J4xyzb1y3k+E9lFMnzt3JKQhtw1V+//Bpu92LWTBnQnInR6/vMKr5HfvoQkP+TuP8cSPQvYITfW9ffwQ/L6p3wK0sH4CRFiRA6eVWiikPBOGf22xVc/LTy3YRYAOq2TF1rUF4Tir8v5b6Sh+r+2zLRyXZYQqOkuEZ8NHQNehZAv8s7tm+i0iJzmSr8t2TE9SgPeBblNMmn+cGydlfy74XsTNVLvoIG2C60yIr7gnaS+u90fuSgteLfwPbtgLWaY90Y43qPlA3F5fiH8vzAYVVcr3ZBTe+RrFNfsT1ZS+w9QFQFmKt1vrHtcVEt/hfVfbD8vGaN25qFpb677I8x9QQ9ZGWc5qW9jqZpcZzmeNQ5EECH2LDyVdfymptbHUFuPIDYQX/KGLy4QBGi7XsmIbOpF0deHHtR/nYjotdqjkfym7bQQbWb5PxuSUa7GzfR0dFtWX/t+F620WOjX26j49Efhfjy98XZN1BLAwQUAAAACADTeFFbRczeXRoAAAAYAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSoruUCAFBLAwQUAAAACADTeFFbecmeHMVFAACwnwQADAAAAGdlb2dlYnJhLnhtbO19f3PcuJXt37ufost/pDy7o3bzN7mxd0vTu6uXqmST2uS9SurVeynZbtt6I0uOJc94Uvnw71xeNvtCJFv3dqMdcIytncgQAQq454AEzgGB5//2+f314ofNx7ur25sXT5Ll6slic/Pq9vXVzdsXTz7dvzmrn/zbv/7j87eb27eblx8vF29uP76/vH/xpKCcfblimS6bVUa/u/zw4cWTV9eXd3dXr54sPlxf3lORF09+fLK4ev3iSb7apFnSlGcvk9XlWf4mTc4uL19vzt4Ub6o3Rf3yTf0SN1l8vrv6l5vb/7p8v7n7cPlq8/tX7zbvL399++ryvv177+7vP/zLs2c//vjjcluz5e3Ht8/wx++efb57/ezt25dL/HyyQPNu7l486f7xL7ivU/rHrC2XrlbJsz/+5tf8d86ubu7uL29ebZ4sqOmfrv71H//h+Y9XN69vf1z8ePX6/t2LJ3VRP1m821y9fUexaFDlZ5TpAwLyYfPq/uqHzR2KimTb+Pv3H5602S5v6Po/8L8W1327nixeX/1w9XrzEVA8Wdx+vNrc3HeXkG7/xLNt4ec/XG1+5LvQv9o/gEw/XN1dvbze4I99/IQGXN28+Ygovnjy5vL6Dum7+5+uNy8v8Qe6X+z+eIarV39F1rZx3F7ccrX6lv4r8V++6hoq/mT+ZHF/e3vd3nK1+NvfFukqXS2+pR8J/0jxoyz50op/t8r4B13Cj5x/FJwn5+I5Z805T855clSyb2HXAkMTER9uYpk3uyamTfFt2kw3MT3qb/ZhTZMCsbp8+eLJ+a8v/uO7/z7f1SCrv02z9Nu0GK8A4OhjDCySxd8W+JHyj2xBYcM/ED76kXdJRJx+VO2PpIUGyZp/21Cy9BPLpECNty1BC9r/b/8bNCT58n8yM6HHnea4v1g6XeLLxzgFXXz8zbxW/8181VRewlwUYIjub1b41ciTh3+ii7Q//YDf0J/X1apI8CdltRbJokCPLRZJQ89B6o7pIikWOX5T4zfVIqPfFUm+yBaUJckW7cMub3tuiSt0Gf9bFKtFQg9FNGyBpyoamdJztCgWBbJVVJaeCSU6N0qt8B/lRo3wX0a/yzL81/4uy/EfPVkL3Kjg26AeRVa2/yra/6VnRYG/UlBYF+0l/C5v8OfoF0WVLDLUBOlqtcB9cXvUuG0NnuH0/8mCH9/VIq0X7V3b+6+Oe6KqGfr82fYd+byDZHH3jvJ278b7zXuMDVB3NKF9IjJWAAmVZMAqiugWMAS4XpT0s0ONMKsd1ArClKDbYlfSbxEfeuwu2rAziGm+xRH/bpEklB0k25jnIuz0YkTQ8XsOO/58KgOflouS7gcu4YVbEn4pbpkugFfZdokJUDBQu7276qP7bnONQVwX9zaQVzcfPt07wXv1ngY07T/vbx/kfn376vvv+mB3VzaXdxgr7bJhJLMbHvHIxhk9/cPz68uXm2sMRH9PVFgsfri8prdp+xfe3N7cL7bPxpR+9/xZO1B7vvn06vrq9dXlzf8C9Nth0n99ev9y8xGcwz9vqYntTaj4YnRElzc5Z3l1e/vx9e9/ugNTFp9/c4XwPH2KUP1xcbYollX2zeKfFn+9vX3/x28wwPzN5ef+8j8PLv+0K/0nlE6Xxfbqn9qrfeE/oXDmXG1rsvnh95v7e0TjbnH5eQPacuzffqSnThdVSvzq7rvb692vPtxe3dyvLz/cf/rYDumB7kdq4/nN2+tNG9j2dxj3vvr+5e3n3/NIBYSge/3hpw9IrbgCL9+ub69vPy7QI9MCIxncrP2J8Qz9bPNQzfpc6ITIg/9Fju4edNP+etLgMUBVop/IQz/bXMCcq9a1FPXjZibdbS4/X921T1vcXHKyJQyNoj/dXN3/epu4v3r1/a6llJ/psI2he8suy9G3fP7sAROff7/5eLO5pj/26W5zl/07E3pXhVfg9NXNp9tPd3yFEWwvocDvLu/fnd+8/u/NW/TS313Ss/Ief/DhTV5vXl29R0H+fR8wQvt/ogX869ebtx8324Zft9Mnjnd7lYL64ePm8vXdu80GnaG7B3cFma1t5bZVzzGyvd6078H3xHTc5T1xmu52v8EDgvPfvfp49YFovHiJB/r3mx1TX1/d0R36X1BuhOQObcMj4fYGQb+ngGOK+en+3S0IhDKX9/Qb6vbXm/eYLC3uW8refHq/+Ujzzw4+6lbtzAs1/yTrj4cAMMKjoa3zGeLFtaZ/XL68u73+dI/JJ4J1s5t8MjG6xwbG0uj6GI1UmFD8hHSFgdCbq8/UDs6Iql79FdDuIG0Jc85xd2DeEf/+HRiGeR4IReOJrh+2//gfV69fb9rnNNcf91rcvvx/eG4+4OyOFLg80SsXl9cf3qESq2V3u+vLn+hBKQLU3u23b97cbe6poWc0BaOGiqu/uX3tBvXyBiRsQeuwX6IVeLZTVNBh+vZAHvipfSztIH/WIfkopu3D8SGoybYdElZqHMOaqmFtACcK1BlKoLVpilv8rGEtUCE7rPT08w/rHwewegW1oJ/UVrzmJjHl38waUm4lXuZ/Z0hpRHTap28r56Ct+b5e+tUi6v/Z+12STHVRGZLtzI0LiWAfH5Rds7t8D5utpTGqjLa2I4zz6+vbHzevB6Ovy0+fr66vLj/+5A62nHB9xogJkjf+/DZEmPF8Rj2eiglDuZsQfLvoB/vpMulnCn/6BpMBrm07cueZkgtGd6H/O4eFHVoqj75pMu6GXhn47rdtdWjewL/tZgL8291oUc6n7viFs8Tjl9i8zGhI8dcOyf1RhWbKUf389LtvELun4ImI6U/4rTWA5wcGUPK2nQh5CV83v30YPjkG34YPf/KR8O3tw+fDPrx9KMc+3LW2Y9ubp5+/WbxYXMIUeo1/buvy5tNN+zfbG7nB7i/tbrX/hbEVSX7ou4oivjamnTC69pfn81eXd7+5/NAqGzf3gOX7Dcj872DoD6jjD5v/TcFGrL/9/G3yf6AWtixZPFs8/fx/n6bU85NWF3n+bHsfieSr2/fvAdXiphUUf9d2952Kdbl68eTzOeb7XZw/3fe//XM3qe1u8MiTg7IfMgxIUpZP2p+mp8duKNBNS0zD9RHA8Y8xwA98KCXLtKzrOkmS7n95vIK6jj2eXJR20D+A6s0Apje/uMSr85f7oRr2wK6U1yecrQce0E0Mj/P4NH9k7IBIt4/z84SeH2Mjg0FQ04lhrpoaJ2oK3vjclFTdlOxhUzq19e/dFAxDuSmZuin5w6Z0D6i/d1PwGOem5OqmFA+bYn37n6gpGJtzUwp1U8qHTemmAn/vpkCQ5aaU6qZUD5vSzbj/3k2BRcVNqdRNqR82pQqjKRgacFNqdVOah02pw2gKyVXclkbdFpR50JgmkMbs3pL61yQKhfmeTPoXJQx1dWtCfVUm/bsSyw3UrQn1bUnL4brW6N+XKBTmC5PMhK41+lcmCoX5zkz6lyZWsahbE+prM+nfm1gko25NqG/OpH91YjWSujWhvjzJvetao397olAIb89HKhln5I+C3w82sARODX6og410NyvXDzZQKMzBRtoPNrA2Ud2aUAcbJLV2rdEPNlAoyMHGGtVvG/P5KTRo+BGPtwVFBktlBmKt9blzotZtHwrrBK7pm6fr5BsI/518SylVewcPiTN83FTXTZamZZoWGEcG0trtQ2OdcmvhbojWprrWDh4iq2WVrqqySbImq9K6xJKXQNq7faysM24vvG/R3kzX3sFj5gzLHNI6XdVZU9bFqgoG3u1zZ51zc3OnubmuuYPn0GqJL3vqHDyuSix3z/EJk350euIWbydC64JbjKXMosWFrsWDidFZtsQHVGVR53laFWlRVpuzYJq8nS2tS24yFnqIJpe6Jg9mTykoneVlktdlAaizOt+cYeQbSJu3c6p1xW2unDZXujYP5ljBNG87yVrX3LzaaV6ta95g0hVM83rNct1w+xqnfY1yUDGYh4XTwO0YCZXshhErdxyhHThNTeMCaONupLQdKj0YKykHS0P9Npw29uMjKLjcRneEhKSujcMxUjBt7MdE0HW5je6oCEldGwfjonDa2A+EoPZyG92hEJK6Ng4HQ8G0sR/6QAPmNrqDHyR1bRwMf8JpYz/WgTLMbXRHO0jq2jgY74TTxn5sA72Y2+iObpDUtTHc8U2vIqOSXRvdIQ6SujaGO8jptWVUsmujO8xBUicmhDvOoQ+TOv2gG+ek7jgHSV0bwx3n9DIxKtm10R3nIKlrY7jjnF48RiW7Nj5QgpTjnKGgHE4b+3EOJGVuozvOQVLXxnDHOb3QjEp2bXTHOUjq2hjsOOecvg/vxHS9141CQXrd6741CHmHmDtqQ1KHWLCjtvO09/OxR4QasUD9/HXfGoS8Q8wdgyKpQyzYMeg57eLTIaZfs4BCQa5ZWPetQcg7xNwRNZI6xIIdUZ+n/boM7KuiRizQdRnrvjUIeYeYOz9AUodYsPODc/q4v0NMv/YEhUJYezJiJPazHbSGEXNnO0jqzMRwZztZP9vBFkhsH7qzHSR1bQxltvMI2eIaokc7cb+GCDthqTtxoGuI1n1rwNCO4O5UF0kdwYOd6p5n/TopbF+mRizQdVLrvjUIeYeYO3FHUodYsBP382z3kZZ+LRgKBbkWbN23BiHvEHuwCEUpQwxbGA5i/Xo37DmoRizU9W59axDyDjFXVEFSh1i4okrWiyrYk1GNWKiiSt8ahLxDzBVVkNQhFq6okvWiCvbpVCMWqqjStwYh7xBzRRUkdYiFK6pkvaiC7VvViIUqqvStQcg7xFxRBUkdYuGKKlkvqmAPXDVioYoqfWsQ8g4xV1RBUodYuKJK3osq2FZZ/UV/qKJK3xqEvEPMFVWQ1K1YDldUoV3zujXKnaiSu6IKkro2zkNUmaxmFFX6EPWiCrYLV3fiUEWVvjVgaEdwV1RBUkfwcEUV2gSuQ0wvqqBQmKJK3xqEvEPMFVWQ1CEWrqiS96JKbtj6JlRRpW8NQt4h5ooqSOoQC1dUyXcb/OhFFRQKU1TpW4OQd4g9+DhJKaoMWxgOYr2oguM71IiFKqr0rUHIO8RcUQVJHWLhiip5L6rg5BM1YqGKKn1rEPIOMVdUQVKHWLiiSt6LKjj3Ro1YqKJK3xqEvEPMFVWQ1CEWrqhCu6V3iOlFFRQKU1TpW4OQd4i5ogqSOsTCFVXo+LcOMb2ogkJhiip9axDyDjFXVEFS9110IKKKu5Xt7zdv6fcP9rHF1wbfLkhIuUy6RLu1QXe8k9je9t+7nV+ndra9626/jQLya/aWbv8MDtR53Z7z1Z6D8Nsu969wklArP9wtfvH2/peLp9/Rpur0veQ/L7Cv7P6tz2kf+cO2wz008ocd1rD5yw0XaU+We/Hk6v2H66tXV/d9/K9JXPnVDZ2qxNUansP0/WbzgQ7F+u3NHz5e3tzRybYPq4aTYz/KTZJfb95cfrru/srmRp6g5FwSW7uv6CzdrCjxdX+DLRwyOlJot43yMsnpCrZ2qPARPLY60HS4XuHDGXL8Ub6r8CGp63CBKHzqDtf1sa7TpW0PfNjh/qM7QE7b4ZD/C3e47YFrR+4/HTvcaIeb6G9nOFqhqOoky7A9TpaW9MUcOiBy1xnlKqsVduCosb7VJj9P9qGvVX7eG65dVxmIy9uwyVOhuhOEaIShPEEIPYu2rsewH5jXeJn97A4QMuC9olNF9hwN8Nh7phfacfIpv2dcoR1J3XsmXKG9byM6sn4oHqo1UvRCO46JZcRcoR1JHWLhCu19GwGDHrFQrZGiF9pxlDAj5grtSOoQC1do79sIGPSIhWqN0OCtQ6wT2gtXaEdSh1i4QnvfRsCgRyxUa4ROoe8Q225i9mAXM6XQjhsFi9juiAe9NTJsTyDWCLa/2yLWCe2FK7QjqUMsXKG9byNg0CMWqjVC5613iHVCe+EK7UjqEAtXaO/bCBj0iIVqjRS90F50QnvhCu1I6hALWGjvrRG0UY1YqNZI2QvtRSe0F67QjqRuO85AhPYRxPo2Agb9WUVhWCOPVDIKRY8SvBe2y07YLl1hG0kdwQMRtsfa2IsqZSeqlK6ogqSujeGKKn0bQXp9Jw5VVCl7UaXsRJXSFVWQ1CEWrqjStxEw6BELVVQpe1Gl7ESV0hVVkNQhFq6o0rcRMOgRC1VUKXtRpexEldIVVZDUIRauqNK3ETDoEQtVVCl7UaXsRJXSFVWQ1CEWrqjStxEw6BELVVQpd/vabze2f7CzvVJUwY2CRWx3PKheVBm2JxBRpexFlbITVUpXVEFSh1i4okrfRsCgRyxUUaXsRZWyE1VKV1RBUodYuKJK30bAoEcsVFGl6kWVshNVSldUQVJ34Ee4okrfRsCgPzV5DqJKFUWVRwneiypVJ6pUrqiCpI7g4YoqVS+qVJ2oUrmiCpK6NoYrqvRtBOn1nThUUaXqRZWqE1UqV1RBUodYuKJK30bAoEcsVFGl6kWVqhNVKldUQVKHWLiiSt9GwKBHLFRRBcfmbRHrRJXKFVWQ1CEWrqjStxEw6BELVVSpelGl6kSVyhVVkNQhFq6o0rcRMOgRC1VUodXlHWKdqFK5ogqSOsTCFVX6NgIGPWKhiirV7qjD7VmHDw47VIoquFGwiPWiCtqoRixUUaXqRZWqE1UqV1RBUodYuKJK30bAoEcsVFGl7kWVqhNVKldUQVJ3omi4okrfRsCgRmzYngBFlTqKKo8SvBdV6k5UqV1RBUkdwcMVVepeVKk7UaV2RRUkdW0MV1Tp2wjS6ztxqKJK3YsqdSeq1K6ogqQOsXBFlb6NgEGPWKiiCn2h2CHWiSq1K6ogqUMsXFGlbyNg0CMWqqhS96JK3YkqtSuqIKlDLFxRpW8jYNAjFqqoUveiSt2JKrUrqiCpQyxcUaVvI2DQIxaqqFL3okrdiSq1K6ogqUMsXFGlbyNg0CMWqqhS96JK3YkqtSuqIKlDLFxRpW8jYNAjFqqoUveiSt2JKrUrqiCpQyxcUaVvI2DQIxaqqNL0okrdiSq1K6ogqUIMNwoVsb6NgEGN2LA9AYoqTRRVHiV4L6o0najSuKIKkjqChyuqNL2o0nSiSuOKKkjq2hiuqNK3EaTXd+JQRZWmF1WaTlRpXFEFSR1i4YoqfRsBgx6xUEWVphdVmk5UaVxRBUkdYuGKKn0bAYMesVBFlaYXVZpOVGlcUQVJHWLhiip9GwGDHrFQRZWmF1WaTlRpXFEFSR1i4YoqfRsBgx6xUEWVphdVmk5UaVxRBUkdYuGKKn0bAYMesVBFlaYXVZpOVGlcUQVJHWLhiip9GwGDHrFQRZWmF1WaTlRpXFEFSR1i4YoqfRsBgx6xUEWVZNWrKk2nqjSuqoKkCjK6U6iY7VoJJNSgjbTo7yGs6HaH5s2gdztDA8h0bDt24+7QyO99d+h0tzv0IzOmuB27/92h67Rq8qLIkyZbVQ2tH+93Y6eto5OiKsskaZqiyrHqeC8X/7D5/JCIv/jLp9v7X37+8+oF/4sZeT7g4X8+cizAPd16yzFkVpNQ3TW9EakF5Xe3V6g77Xdf0KbDCCn226Zz32iTe5tU+l0yJQV9rVLpI+Ea6DAxXPvCNRBBYrj2hWugQMRw7QvXYPofw7UvXIO5dwzXvnANJr4xXPvCNZh1xnDtCVc6mO7FcO0L18Bl7mZzMVyj4RqM6mO49oVryl2N4RoN12BUH8O1L1yDUX0M175wDUb1MVz7wjUY1cdw7QvXYFQfw7UvXINRfQzXnnBlg1F9DNe+cA1G9d0aqRiusXDlg3B1C5RiuMbCNTwttFsdFMM1Fq7hOQ7d0pwYrrFwDXdo7NbFxHCNhWu490K3KCWGayxcw68qutUgMVyjA4mB3hUHEvvCNdC7Yrj2hWtqKX8M12i4BnpXDNe+cA30rhiufeEa6F0xXPvCNdC7Yrj2hWugd8Vw7VMkBnpXDNe+cA2GqVHA2ReuwTA1hmtfuAbD1BiufeGa+twzhms0XINhagzXvnANhqkxXPvCNRimxnDtC9dgmBrDtc8JGgxTY7j2hWswTI3G2b5wDYapMVz7wjUYpsZw7QvXYJgaw7UvXFNbgsRwjYZrMEyN4doXrsEwNYZrX7gGw9QYrn0rcAbD1BiufeEaDFPjgqV94RoMU2O49oVrMEyN4doXrsEwNYZrX7gGw9QYrn3hmto2LoZrNFyDYWoM175wDYapMVz7Vj4PhqkxXPvCNRimxoXi+8I1GKbGcO0L12CYGsO1L1yDYWoM175wDYapMVz7wjUYpsZw7QvX1NbCMVyj4RoMU2O49n1xNhimxnDtC9dgmBo/0NsXrsEwNYZrX7gGw9QYrn3hGgxTY7j2hWswTI3h2heuwTA1hmtfuAbD1BiufeGaOn4ihmv0S//BMDWGa1+4BsPUuDHCvnANhqkxXPvCNRimxnDtC9dgmBrDtS9cg2FqDNe+cA2GqTFc+8I1GKbGcO0L12CYGsO1b3v/yfPJYrzG4xWPoN9/mNebq8316wcner0ZnN3VXvvu9nPbiP1HePENt8HcFdx/nNfuwLNjT/P67Zs3d5v2XC7sJ0+ncuFsrT1nfU2eCffq8kMLE0f56edvXvDv39yiuXeg2ZueOHdXf938pj3+y/0/nApGl1AFHKvbHRO3rerm5u39u44ZXVT1rI6ktmyeHKNl2XonRsvyBXiMluVDpBgty3rYGC3LsowYLYs7EKNlmaTGaNlPp87k6dRI4HTqbOx06narOsPp1DxA8Xo6dbY7nbrbOC+eTo1cX+R06rPVskzzIm3yJE9XdV6tKud46rxYJXlSpHXW4HK6ar/FtbMxl2xEAmzMx9jY7khjYCMPAL2yMd+xsdsfJ7Lxy52VnqZ5htPQcZB3XoF1DhdXRZKu0jQrcKD6Km8yfG15EBkLSUYkQMZijIzd7dVk5PG1VzIWOzJ2X8FHMn7BR+NqVdU5CFfWVbKq8KCEkCQJif8rk2KV1WmaVE1WJEMtSUfJUlISCVCyHKNk+42ZgZI8ifFKyXJHye6Lt0jJL0XJbJkmRVnUeZ7i6ZgXZbY5k+/rZLnK8lVeNClinxfFqt6c4bD+gyhZSUoiAUpWY5Rs15MbKMkzRa+UrHaU7Fa3R0p+sadkind2lpdJXpdFnhZZnW/OcK7zjpT5ssmzql41dZpkVVMUmzPsmH0QJ2vJSSTAyXqMk+3iMQMneT7ulZP1jpPdUrbIyS82jJRv6cOY1kimIQGmNWNMa+1fA9NYy/DKtGbHtM6MjkybEdOSlaQapcA14DlCNtjpNrZ1/rtXuiWrHd+4QpFw8yJc4hAOKSJcMkq4RxYcDAn32EKDQwiXCMJ1eEXCzYlwqUM4pIhw6Sjh2sUiFsLx8gK/hEsF4brVK5FwcyKcY35Qigg3an9sZ8d6wp3AAEmEA8IVioSbF+Ecf4NSRLhRhyOxWhwo4J9wwuTgCkXCzYtwjodBKSLcqIuRWG0MFPBPOGFkcIUi4eZFOMehoBQRbtSjwGpbI+FO4FIkwqbgCkXCzYtwjv9AKSLcqAORWC0IFPBPOGFCcIUi4eZFOMdcoBQRbtReSKz+Agr4J5xwGLhCkXDzIpzjMVCKCDfqMiRWmwEF/BNOGA1coUi4WREudZwGSoFw6ajTAAPXRjgU8E64VDgNXKFIuHkRznEaKEWEG3UaUqvTgAL+CSecBq5QJNy8COc4DZQiwo06DanVaUAB/4QTTgNXKBJuXoRznAZKEeFGnQZ8Dm0k3AmchlQ4DVyhSLh5Ec5xGihFhBt1GlKr04AC/gknnAauUCTcvAjnOA2UIsKNOg2p1WlAAf+EE04DVygSbl6Ec5wGShHhRp2G1Oo0oIB/wgmngSsUCTcvwjlOA6WIcKNOQ2p1GlDAP+GE08AVioSbF+Ecp4FSRLhRpwFfQBoJdwKnIRVOA1coEm5ehHOcBkoR4UadhtTqNKCAf8IJp4ErFAk3K8JljtNAKdp+YtRpyKxOAwr434FCOA1coUi4eRHOcRooRYQbdRoyq9OAAv4JJ5wGrlAk3LwI5zgNlCLCjToNmdVpQAH/hBNOA1coEm5ehHM3dOp2dBrf0sm8p9MpNnWSuzpFp2GGhHOcBkoR4UadhszqNKCAf8IJp4ErFAk3L8I5TgOliHCjTgO2djYS7gROQyacBq5QJNy8COc4DZQiwo06DZnVaUAB/4QTTgNXKBJuXoRznAZKEeFGnYbM6jSggH/CCaeBKxQJNy/COU4DpYhwo05DZnUaUMA/4YTTwBWKhJsX4RyngVJEuFGnIbM6DSjgn3DCaeAKRcLNinC54zRQirYWHnUatpvO6TcXPoHTkAungSsUCTcvwjlOA6WIcKNOQ251GlDAP+GE08AVioSbF+Ecp4FSRLhRpyG3Og0o4J9wwmngCkXCzYtwjtNAKSLcqNOQW50GFPBPOOE0cIUi4eZFOPd0iO54iPHzIcwHRJzihAh5RER0GmZIOMdpoBQRbtRpyK1OAwr4J5xwGrhCkXDzIpzjNFCKCDfqNOCICSPhTuA05MJp4ApFws2LcI7TQCki3KjTkFudBhTwTzjhNHCFIuHmRTjHaaAUEW7UacitTgMK+CeccBq4QpFw8yKc4zRQigg36jTkVqcBBfwTTjgNXKFIuFkRrnCcBkrRuXGjTkNhdRpQwP/RccJp4ApFws2LcI7TQCki3KjTUFidBhTwTzjhNHCFIuHmRTjHaaAUEW7UaSisTgMK+CeccBq4QpFw8yKc4zRQigg36jQUVqcBBfwTTjgNXKFIuHkRznEaKEWEG3UaCqvTgAL+CSecBq5QJNy8COeeNd0dNj1+2rT5uOlTnDctD5yOTsMMCec4DZQiwo06DYXVaUAB/4QTTgNXKBJuXoRznAZKEeFGnYbC6jSggH/CCaeBKxQJNy/COU4DpYhwo05DYXUaUMA/4YTTwBWKhJsX4RyngVJEuFGnobA6DSjgn3DCaeAKRcLNinCl4zRQCoQrR52G0uo0oIB3wpXCaeAKRcLNi3CO00ApItyo01BanQYU8E844TRwhSLh5kU4x2mgFBFu1GkorU4DCvgnnHAauEKRcPMinOM0UIoIN+o0lFanAQX8E044DVyhSLh5Ec5xGihFhBt1Gkqr04AC/gknnAauUCTcvAjnOA2UIsKNOg2l1WlAAf+EE04DVygSbl6Ec5wGShHhRp2G0uo0oIB/wgmngSsUCTcvwjlOA6WIcKNOQ2l1GlDAP+GE08AVioSbF+Ecp4FSRLhRp6G0Og0o4J9wwmngCkXCzYtwjtNAKSLcqNNQWp0GFPBPOOE0cIUi4WZFuMpxGigFwlWjTkNldRpQwDvhKuE0cIUi4eZFOMdpoBQRbtRpqKxOAwr4J5xwGrhCkXDzIpzjNFCKCDfqNFRWpwEF/BNOOA1coUi4eRHOcRooRYQbdRoqq9OAAv4JJ5wGrlAk3LwI5zgNlCLCjToNldVpQAH/hBNOA1coEm5ehHOcBkoR4UadhsrqNKCAf8IJp4ErFAk3L8I5TgOliHCjTkNldRpQwD/hhNPAFYqEmxfhHKeBUkS4UaehsjoNKOCfcMJp4ApFws2LcI7TQCki3KjTUFmdBhTwTzjhNHCFIuHmRTjHaaAUEW7UaaisTgMK+CeccBq4QpFwsyJc7TgNlALh6lGnobY6DSjgnXC1cBq4QpFw8yKc4zRQigg36jTUVqcBBfwTTjgNXKFIuHkRznEaKEWEG3UaaqvTgAL+CSecBq5QJNy8COc4DZQiwo06DbXVaUAB/4QTTgNXKBJuXoRznAZKEeFGnYba6jSggH/CCaeBKxQJNy/COU4DpYhwo05DbXUaUMA/4YTTwBWKhJsX4RyngVJEuFGnobY6DSjgn3DCaeAKRcLNi3CO00ApItyo01BbnQYU8E844TRwhSLh5kU4x2mgFBFu1GmorU4DCvgnnHAauEKRcPMinOM0UIoIN+o01FanAQX8E044DVyhSLhZEa5xnAZKgXDNqNPQWJ0GFPBOuEY4DVyhSLh5Ec5xGihFhBt1Ghqr04AC/gknnAauUCTcvAjnOA2UIsKNOg2N1WlAAf+EE04DVygSbl6Ec5wGShHhRp2Gxuo0oIB/wgmngSsUCTcvwjlOA6WIcKNOQ2N1GlDAP+GE08AVioSbF+Ecp4FSRLhRp6GxOg0o4J9wwmngCkXCzYtwjtNAKSLcqNPQWJ0GFPBPOOE0cIUi4eZFOMdpoBQRbtRpaKxOAwr4J5xwGrhCkXDzIpzjNFCKCDfqNDRWpwEF/BNOOA1coUi4eRHOcRooRYQbdRoaq9OAAv4JJ5wGrlAk3KwIl6wcq6FNgnL4OcY5/NpIOirhnXW46Y52XZ0i72bFOxZ8Se/tmMfy3EPG/YdRikN+72wTyu+I8JviiMEd1/C/kWkemXa2WtZp1eRFkSdNtqoabH5A3EuW9aqpVkm+Sso0zyqm4rJoyqqoiqaoVsWq3J63a+Uma8MkDXfcZCVvwE2jaof83rkpROIRjThy86RPwSWoV6RNnuTpqs6rFVgIaoKyTV43VVVkZZpmZYJxEbMT+Yo0rYsyX6UgZ+ejWtnJQjLpyNvTvMbZaZT4kN87O4WiPCIoR3ae+MmZ4slYlkmWZ3lVpDW/tJegJB6OTZIXKzxPUwhhzM7VKqEnZwPa1mWTZmDwgWfN8eFyO4KyTDggqFESRH7/x8yJU+YiQb/04xP8q/M0K8q6SlYVHqagIj9A+UqdNWlS1HWVZmg0SJouizSpszxZ1RlGBE1WbM66WbB5m2Lel3hHUpYWByQ1yojI73+HYrFBcSTpF36KZktQsCzqPE/xDM2LMtuc8XvevVLVDV8BTSu86Zu6STE+zbIiz5PNWXrgs7TbtmdHUxYkBzQ1io/I7397C7G7RaTpl6Vpind9lpdJXpcFBplZnYNyPEs/m7p2xHJoXv+8IyWLlgNSGgVK5Pe/EloshI6knJ1K1OnfO6YlrFYOqJYYdUkq4F8MF1p4JNvsyEbcaqVvQTdeFj2km3ENNBU4gQouRfBIuPkRjpfZJ7TMfks4XhY9JJxxDTQV8E84seiee0Ak3LwIx65LImyXZMJ3SazGCwr4J5ywXrgHRMLNi3BspSTCS0kmzJTE6qaggH/CCT+Fe0Ak3LwIx+5IIuyRZMIfSawGCQr4J5ywSLgHRMLNi3DsdiTC7kgm/I7EaniggH/CCcuDe0Ak3LwIx85FIqyLZMK7SKzmBQr4J5ywL7gHRMLNi3DsQSTChEgmXIjEakOggH/CCSOCe0Ak3LwIx/5CIgyGZMJhSKwWAwr4J5wwGbgHRMLNi3BsMyTCZ0gnfAYYZzbCoYB/wgmjgXtAJNysCEfsotXPwmlIJ5yG1Oo0oID/FdDCaeAeEAk3L8Kx05AKpyGdcBpSq9OAAv4JJ5wG7gGRcPMiXPd9h3Aa0gmnIbU6DSjgn3DyI4/oNMyQcOw0pMJpSCechtTqNKCAf8IJp4F7QCTcvAjHTkMqnIZ0wmlIrU4DCvgnnHAauAdEws2LcOw0pMJpSCechtTqNKCAf8IJp4F7QCTcvAjHTkMqnIZ0wmnYLm/XE+4ETkMqnAbuAZFw8yIcOw2pcBrSCacBX7MZCXcCpyEVTgP3gEi4eRGOnYZUOA3phNOQWp0GFPBPOOE0cA+IhJsX4dhpSIXTkE04DZnVaUAB/4QTTgP3gEi4WRGO2EV7WQinIZtwGrb7EegJdwKnIRNOA/eASLh5EY6dhkw4DdmE04CPuo2EO4HTkAmngXtAJNy8CMdOQya3kpraS8q8mdQJnIZMOA3cAyLh5kW4bnso4TRkE05DZnUaUMA/4eQeUdFpmCHh2GnIhNOQTTgNmdVpQAH/hBNOA/eASLh5EY6dhkw4DdmE05BZnQYU8E844TRwD4iEmxfh2GnIhNOQTTgN2OrRSLgTOA2ZcBq4B0TCzYtw7DRkwmnIJpyGzOo0oIB/wgmngXtAJNy8CMdOQyachmzCacisTgMK+CeccBq4B0TCzYtw7DRkwmnIJ5yG3Oo0oIB/wgmngXtAJNysCEfson2JhdOQTzgNudVpQAH/exMLp4F7QCTcvAjHTkMunIZ8wmnIrU4DCvgnnHAauAdEws2LcOw05MJpyCechtzqNKCAf8IJp4F7QCTcvAjHTkMuT6KYOorCfBbFCZyGXDgN3AMi4eZFuO5sCeE05BNOQ251GlDAP+HkARPRaZgh4dhpyIXTkE84DTgcwEi4EzgNuXAauAdEws2LcOw05MJpyCechtzqNKCAf8IJp4F7QCTcvAjHTkMunIZ8wmnIrU4DCvgnnHAauAdEws2LcOw05MJpyCechtzqNKCAf8IJp4F7QCTcvAjHTkMunIZiwmkorE4DCvgnnHAauAdEws2KcMQuOmBOOA3FhNNQWJ0GFPB/yJxwGrgHRMLNi3DsNBTCaSgmnIbC6jSggH/CCaeBe0Ak3LwIx05DIZyGYsJp2J5xrCfcCZyGQjgN3AMi4eZFOHYaCuE0FBNOQ2F1GlDAP+GE08A9IBJuXoRjp6GQx1hPnWNtPsj6BE5DIZwG7gGRcPMiXHcqtXAaigmnobA6DSjgn3DyaOroNMyQcOw0FMJpKCachsLqNKCAf8IJp4F7QCTcvAjHTkMhnIZiwmkorE4DCvgnnHAauAdEws2LcOw0FMJpKCachsLqNKCAf8IJp4F7QCTcvAjHTkMhnIZywmkorU4DCvgnnHAauAdEws2KcMQuEK4UTkM54TSUVqcBBbwTrhROA/eASLh5EY6dhlI4DeWE01BanQYU8E844TRwD4iEmxfh2GkohdNQTjgNpdVpQAH/hBNOA/eASLh5EY6dhlI4DeWE01BanQYU8E844TRwD4iEmxfh2GkohdNQTjgNpdVpQAH/hBNOA/eASLh5EY6dhlI4DeWE01BanQYU8E844TRwD4iEmxfh2GkohdNQTjgNpdVpQAH/hBNOA/eASLh5EY6dhlI4DeWE01BanQYU8E844TRwD4iEmxfh2GkohdNQTjgNpdVpQAH/hBNOA/eASLh5EY6dhlI4DdWE01BZnQYU8E844TRwD4iEmxXhiF0gXCWchmrCaaisTgMKeCdcJZwG7gGRcPMiHDsNlXAaqgmnobI6DSjgn3DCaeAeEAk3L8Kx01AJp6GacBoqq9OAAv4JJ5wG7gGRcPMiHDsNlXAaqgmnobI6DSjgn3DCaeAeEAk3L8Kx01AJp6GacBoqq9OAAv4JJ5wG7gGRcPMiHDsNlXAaqgmnobI6DSjgn3DCaeAeEAk3L8Kx01AJp6GacBoqq9OAAv4JJ5wG7gGRcPMiHDsNlXAaqgmnobI6DSjgn3DCaeAeEAk3L8Kx01AJp6GacBoqq9OAAv4JJ5wG7gGRcPMiHDsNlXAa6gmnobY6DSjgn3DCaeAeEAk3K8IRu0C4WjgN9YTTUFudBhTwTrhaOA3cAyLh5kU4dhpq4TTUE05DbXUaUMA/4YTTwD0gEm5ehGOnoRZOQz3hNNRWpwEF/BNOOA3cAyLh5kU4dhpq4TTUE05DbXUaUMA/4YTTwD0gEm5ehGOnoRZOQz3hNNRWpwEF/BNOOA3cAyLh5kU4dhpq4TTUE05DbXUaUMA/4YTTwD0gEm5ehGOnoRZOQz3hNNRWpwEF/BNOOA3cAyLh5kU4dhpq4TTUE05DbXUaUMA/4YTTwD0gEm5ehGOnoRZOQz3hNNRWpwEF/BNOOA3cAyLh5kU4dhpq4TQ0E05DY3UaUMA/4YTTwD0gEm5WhCN2gXCNcBqaCaehsToNKOCdcI1wGrgHRMLNi3DsNDTCaWgmnIbG6jSggH/CCaeBe0Ak3LwIx05DI5yGZsJpaKxOAwr4J5xwGrgHRMLNi3DsNDTCaWgmnIbG6jSggH/CCaeBe0Ak3LwIx05DI5yGZsJpaKxOAwr4J5xwGrgHRMLNi3DsNDTCaWgmnIbG6jSggH/CCaeBe0Ak3LwIx05DI5yGZsJpaKxOAwr4J5xwGrgHRMLNi3DsNDTCaWgmnIbG6jSggH/CCaeBe0Ak3LwIx05DI5yGZsJpaKxOAwr4J5xwGrgHRMLNi3DsNDTCaUhWE1YDLhgpRyX8c06YDdwJIueC5NwfNp8HhPvFXz7d3v/y85/5J4D8LkkIyadPu0u7K+d05Z8WnH7BP3qWfn56/s23i5/wv4szKvwU99nRgkuulklBP/96e/v+Tyj5kND/mTxiZdxTA7ZMpdzeuZwIHyMZ8TEQ5y/A5JYVv7u9QsOB8FmxRAcikJdlkzbi/+oW9S5oR6KeTqKOKwbUhUzKJR9H/RE/4QHqJzATXKoGh3qR+gQ6mwQaVwxAC3mSSz4O9CM6/gOgTyDiu+wMDugMu+T7AzqfBBpXDEALWZBLPg70I/r5A6BPIJ677AwO6KSp5HMc4pc/2AHNBOwtaGrYhTjHJR+H/REV+wHsJ5CwXa4GB/sqc17fOXYO8od7OYk7rhhwFxoZl3wc90fE5Ae4n0BJdskaGO5nCGCWrsT/4dXjD/dqEndcMeAupCou+Tjuj2i6D3A/gaDrkjU83NOmcnD3+ZyvJ3HHFQPuQjHiko/j/oi0+gD3E+iqLlnDwz0vnf7us7s3k7DjigF2Idpwycdhf0TgfAD7CdRNl6vhwV6m5Ymm52nb6DHY6Yoe9lToG1zyUdjTR0RGF3bk9g+7w9XwYK8ap7d7nMOlk1ocXTHALgQOLvk47CYtDrm9w+5yNTzYm8J5ufuEfVKMoysG2IXcwSUfh90kxiG3f9gdroYGe7JM0pP19klpjq4YYBfiB5d8HHaTNIfc/mF3uBoe7Cm+FPSH9KQ2R1cMSAu9g0s+jrRJm0Nu/0g79AwP6bzwOF5PJ+U4umJAWigcXPJxpE1yHHL7R9qhZ3hIl5g7+kN6UoCjKwakhabBJR9H2iTAIbd/pB16hod0hc2hDkN6DUNwBxUhjOl9B8Yfj7a8L0yWN+X+WixvRN2n5b0mzVULo9nDvjB52JT7a/GwtzAe7mGv4d+pkTOb0hcmU5pyfy2m9Ba5w03pNSw4NXJml/nC5DJT7q/FZd4i58tlXpNvocXRbBtfmGxjyv212MZbHL3Zxmt4ZGogzT7whckHptxfiw/MQHr0gdc0cdECaTZ2L0zGLuX+WozdHkhfxu4aNpYaSLNTe2Fyain31+LU9kB6cmrX8KXUOJqt1wuT9Uq5vxbrtcfRk/W6htGkxdHupV6YvFTK/bV4qT2OnrzUNZwjNY5mc/TCZI5S7q/FHO1x9GSOrmEFqXE0u50XJreTcn8tbmeHoze3cw2jR42j2b68MNmXlPtrsS97HA+3L9dwbtTQmf3IC5MfSbm/Fj+yh+5wP3INK0YNndlgvDAZjJT7azEYe+gONxjXcOnU0JkdwwuTY0i5vxbHsIfucMdw6wALcxjG2tACnl6b6zhyurW5pkWayO0Zz/NwphLbj23qonYkGo9ojizCm7bzBc11Zr7Jy/cOZDhjUAYyXSY4nNMfdiMr6SaxEwMD3TI60yo676PQ83DGnVvsVmTeesNuZG3cJHZiZKBbGGdaF+d9GHoezsCTsUuWde7ahx6BHFn6NgmkGCfo1r2Zlr15H5SehzMM3QJZ1n52jRgBcmRl2ySQYpSqW9ZmWtXmfYh6Hs6gdAtkkTg90ieQI9+KTgIpD2pXAWn6TtS7m3gejn+4BTIrfL4WR773nMROnkSiws70rad3A/E8HMtwi11SO53w4BXEI0COfME5CaTcdEsFpOnrTe8O4nk4nuEWyBVp0ge6vXqX0D6ZvzBN5in3z3cyv10C5Wkyvza4ScZ5+4XNSvoZz9sZs2Pm7Wu9WWSdol+YnKKf8xR9C9PhU/S13hiyzsYvTK7Qz3k2zjB5m42v9Y6QdeJ9YbKDfs4T7y1mnibea70VZJ1jX5h8oJ/zHHuLmac59lq/QNc6nb4wrc79OU+nt5gdPp1e65ffWmfOF6a1tz/nmfMWJk8z57V+qa11knxhWmf7c54kbzE7ZpL8KExjc1/T1FcPQDAhTZdZfvgquodvFcyyvM1fTa8V5Pa/JMRZxxIIbtkSs5xjfeiR3QImt22kK/t2C6BiWJ7iCfb/NMFOub8W2AH2CWCf3LWRrhwOu3mlAj7HtsB+gi+DUjHuZRIGBfsRKxdGYJ/ctZGuHA67eZFDanIBkNs/7GIczSQMCHZ/ix6GHMgmt3CkK4dzwLw+IjOtFURu/xwQ43JmZFAc8LVeYoQDk/s50pXDOWBeWpGZdndEbu8cyIQvxowMigO+llqMcGByc0e6cjgHzKsyMtNKU+T2zwHx8RMzMigOHLFKYwT2yc0d6crhsJsXdGS2Raon+FYqE5MUJmFQsPta4DHCgcltH+nK4RwwrwXJTItdkds/B+SMJRS3bceBw2WvMdgn94CkK4fDfsB3IplpcSxy+wdezFmYhgEB7++rkREWTO4PSVeOYIH9nL3MtLIWuf2zQMxamJNBseB05+xlk7ofXTmCBfZz9zKT8ofc/lkg5i3MyaBY4PXcvWxS+aMrRwBvP4cvM2l/yO0feDFZYRoGBbzXc/iySe2PrhwBvP1cvsyk/iG3f+DFdIVpGBTwJzyXL5+U/+jKETSwn9OXmwRA5PZPAzFjYVIGRYNTntOXT0qAdOUIHtjP7ctNIiBye+dBLmYwzMqAeHDac/vySRmQrhzBA/s5frlJCERu/zwQcxhmZVg8OOE5fvmkLkhXjuCB/Vw/rEux8OAEymAuZjHMyrB4cLpz/fJJaZCuHEED+zl/ue1L+BOIg7mY0zApw6LB6c75yyelQrpyxLIg+7l/uUkqRG7/NJDLG0KTCk967l8+qRXSlSNoYD8HMDdphcjtnwZihsOkDIsGpzsHMJ8UC+nKETSwnwuYm8RC5PZPAzHBYVKGRINTnguYT0qHdOUIGtjPCcxN0iFy+6eBmN8wKcOigddzAvNJ7ZCuHIG8/dzA3KQdIrd/5MWMhnkYFvJezw0sJuVCunIE8vZzBAuTXIjc/pEXkxjmYVjIez1HsJgUCOnKEcjbzxUsTAIhcntHvhDzFuZhWMgfsUvoCPKTkiBdOQJ5Z6W9DnmTJIjc/pEXUxXmYVjIwxXwiPykCEhXjkDeWWyvQ94kAiK3f+TF7IR5GBLy+CDIpw1QTOp+dOUI5J0l9jrkTbofcvtHXkxImIdhIZ9WcqbvcW1YMSn70ZUjPgtzFtnrWGDbPvMEsl8hJifMybBYkMOZ8If8pNJHV45A3llar0PepPQht3/k5bdMwSl96bJc+XznT4p7dOUI5J3V9TrkTeIecvtHXkxOmIdhIV9VpzL+iklxj64cQQNngb2OBiZxD7n900DMVJiUYdGgyU4l9ReTSh9dOYIGznJ7HQ1MSh9y+6eBmLYwKUOiQbZMVqeS+stJ2Y+uHEEDZ729bvdtk+yH3P5pIOYwTMqwaJCWp3oalJMaIF05ggbOgnsdDUwaIHJ7p0EpJjFMyrBokLuLBD2uFS0nBUG6cgQNnOX3OhqYBEHk9k8DMaNhUoZFg6JxFgV5XCJYTqqDdOUIGjiL8XU0MKmDyO2fBmJ6w6QMiwaVu0TQJw0mpUK6cgQNnMX4OhqYpELk9k8DMb1hUoZFgyZ1xgY+aTCpFdKVI/YSctbi62hg0gqR2z8NxPSGSRkSDfLlyl0i6JMGk8IhXTmCBs5SfB0NbAf1nEA4LMX0hkkZFg1SZ4mgR+OgnBQR6coRLHAW4utYYBIRkds/C+Q2SMGJiPkyp8PMvSE/qRvSlSOQd9be65A36YbI7R95MaFhHoaFfFGfqv9PyoZ05QgWOEvvdSwwyYbI7Z8FYj7DnAyLBVUhBwMeWVBNqoZ05QgWOCvvdUe9mVRD5PbPAjGdYU6GxYLG52LBalIopCtHIO8sttchbxIKkds78pWYwTAPQ0K+WK7qU/X/SZ2QrhzBAmetvY4FJp0Quf2zQExgmJNhsSD1uXCwmpQG6coRyDtr7XXIm6RB5PaPvJi0MA/DQj5PTtX/J5VBunIEC5x19zoWmJRB5PbPAjGBYU6GxYKi8tn/J8VAunLEptLOunsd8iYxELn9Iy8mLczDsJCv8lP1/0ktkK4cwQJnDb6OBSYtELn9s0BMWpiTYbGg8bmIsJrU/+jKEcg7a/B1yNtO+T6B/leJSQvzMCTky+XKWUTos/9PaoF05QgWOOvxdSwwaYHI7Z8FciP04LTAcpliw0N/yE/qf3TlCOSdNfg65E36H3L7R15MWpiHYSGfr5LTHC1ST+p/dOUIFjjr8VUsqE36H3L7Z4GYtDAnw2JBAYPCH/KT+h9dOQJ5Zz2+DnmT/ofc3pGvxaSFeRgW8pWzUNDj+7+e1P/oyhEscJbj61hg0v+Q2z8LxKSFORkWC2pnL0GPjnA9qQXSlSNY4KzG17HApAUit38WiAkMczIkFlTLVXmqscCkFkhXjmCBsxhfxwKTFojc/lkgJjDMybBYkNKBrt6Qn9QC6coRh4s56+91yJu0QOT2j7yYwDAPw0I+cxYG+hwLTGqBdOUIFjjL73UsMGmByO2fBWICw5wMiwUFPnL0h/ykFkhXjkDeWXGvQ96kBSK3f+TFBIZ5GBbylbNboM/+P6kF0pUjWOAsuNexwKQFIrd/FogJDHMyLBbUzrpAn8vD60lhkK4cQQNnwb2OBiZhELn900AekhicMFgvVz53DmwmxUC6cgTyzhp7FfKNSQxEbv/Ii1kL8zAs5FOfiwGbSTGQrhyBvLOuXoe8SQxEbu/IN2LWwjwMC/nsVIsBm0kxkK4cwQJnjb2OBSYxELn9s0DMWpiTYbGg8LkYsJkUAOnKEcg76+p1yJsEQOT2j7yYtTAPw0K+8rmLYDMp+tGVI5B31tLrkDeJfsjtH3kxU2EehoV87XMBYDMp+tGVI06Td9bS65A3iX7I7R95MTlhHoaEfLNc+dw5sJkU+ujKEcg76+d1yJuEPuT2j7yYnDAPw0I+9bnor5kU+ujKEcg76+d1yJuEPuT2j7yYnDAPw0I+cxb9+ez/k0IfXTmCBc76eR0LTEIfcvtngZicMCfDYkGROZsDeWTBpM5HV45ggbOWXscCk86H3P5ZICYqzMmwWFD57P/JalLoay8dgb2zgl6FPf6iBXzK7h99MVlhLoaFfn3wwr81HUTvgIdd6Kd2cxKbOWmgu8C99chRbu/AuedTBAMcNvIDcOlylRy6s+M6xZNeiZvccEGHm+VxS7n94+acLhEYbsmyzt3D3A8FMaO660CU66VVIOLeBhCR2z+IzkERwYFY1s5R7IcetbrOoLArQZRuhw5Ei9lBuf2fp++c8xAciEXi9MTDQcTwSQmi/AhIB6LFq6Dc/kF0jmwIDsQMJ7IcihtKKnGTTr0ON4vTQLn94+YcuBAcbkntdL6Dx6AZbqgEUQ7EdSBaTAPK7R9E57iE4EBcpYd3PqwqUuKWiNcI/dAgZxH9Kbd/5JwTDgJDbrWsi1ou8TrU6F9npR5G8SJJVAr+Be5ugfEECr57QkFwMJaNp3Eonr9aGMV7JVHJ8Re4uwXGE8jx7gkDwcFYkJJyIHJ6DSYRL5NEp8Lg7hbkTqDCuIcCBIdchl2+D0VOr8Ik4mWS6HQY3N2C3Al0GHcf/+CQSxpXhzl0lfM61wsxiXibMH6P4oi7G3BEbv84OhvxB4fjKnNegTm2WDoUSL0Yk4j3SaKTY3B3C5AnkGPcrfQDA/IMAXRPrDl4Jdqa1rNogRSvl0QnyeDuFiBPIMm4m+GHB2TqfEu+Sg5/tOoVmkS8bRKdRoO7W4A8gUbj7mcfHpC5e2rM4R1SL9Ik4m2T6GQa3N2C4wlkGnd3+vBwLFNnncfBk41cL9qk4mWT6kQb3N2C4wlEG3d/+fBwrNxzWw6eeuR61SYV75pUp9rg7hYcT6DauDvEh4dj4xy8cgSOetkmFa+aVCfb4O4WHE8g27j7vYeGI0wM53PpI3DUizipeNWkOhEHd7fgeAIRx92xPTwcU3yFfSh0ehUnFW+XVKfi4O4W6E6g4rhbrocHXX7wR8rrQi/cpOKFkuqEG9zdAB1y+4fO2Sc9POjKg78yXhd6qSYV75BUJ9Xg7hboTiDVuBudhwddhc3LDoVOL864KzB10JnEGeT2D52zO3l40EEhPRg6vRzjLsLUQWeSY5DbP3TO9uKhQYdgHy6JFnoFxl16qYPOpMAgt3/onD3Bw4MurXwctbcu9AKMu/hSB6NJgEFu/zA6G3yHB2N+8Key60KvubhLLnXQmTQX5PYPnbMrd3jQlQd/67qm7fC00DmrLnXQmWQW5PYPnbOtdnjQVc7HqofbEIXheyVn4aUOR5PMgtz+cXQ2xg4PxybzI3sWes3FXYapw9GkuSC3fxydra1DwzFbJis/smepF2DcdZgqHHF3A47I7R9HZ3Pq8HBMSz/9sdSrMe5CTB2OJjUGuf2f3etsNR0ejrm7cObgBVClXppxl2XqcDRJM8jtH0dns+jwcCwax6Y/eNkMrUnV4ugs0tThaNJpkNs/js7Wz+HhWLnLZg7HUS/auIs0dTiaRBvk9o+js3lzeDg2qZd9kNelXrVx12jqcDSpNsjtH0dn9+XQcMyXK3fZzOE46iUcd4mmDkeThIPc/nF09lIOD8fUWTZzsIhKG55oYXQWaOpgNMk5yO0fRmdj5PBgzNODFZxSr+C4azJ10JkUHOT2D52zm3F40BXOyQCH90DDBjTOkkwdjCYBB7n9w+hsTRwejFXhY5fvdaXXb9wVmSoYcXcDjMjtH0Znn+HwYGwOX0BT6SUbdxGmDjqTZIPc/o9bdTYKDg26Yrnyss/+utIrNu4aTB2MJsUGuf3D6Oz6Gx6M6eGLaSq9SOOuwdRBZxJpkNs/dM62veFBlyd+eqBeo3HXY+pgNGk0yO0fRmff3fBgLA7etn5d6WUZdz2mDjqTLIPc/qFzNssND7oq99MD9aqMuzZTB6NJlUFu/zA6+96GB2Nz+MIa6rta6Jy1mTroTEoMcvuHTgydmUghQVcuV87CmsN7oF6Vcddp6mA0qTLI7R9GuW1jcKpMuUxp+6YDodMrMe7aTB10JiUGuf1DJ4bOTKSwoMtXPg5cX9eGzYCddZoqGHF3A4zI7R9GMXRmUoUFY3H4Juq1Xolx12nqoDMpMcjt/6xLMXRmIoUFXeUsnjn4HUgfRGlhdJZp6mA0KTHI7R9GMXRmUoUFY+3sOXOwwVTrVRl3laYORpMqg9z+YRTDaCZVSDBWy1Xp532oV2XcRZo6GE2qDHL7h1EMo5lUYcGY4sCMQ6HTqzLuukwddCZVBrn9QyeG0UyksKDLnMUyh78P9aqMuyxTB6NJlUFu/zCKYTSTKiwYC/po6UDo9KqMuxJTB51JlUFu/9CJYTQTKSzoKmdXmcN7oF6VcRdi6mA0qTLI7R9GMYxmUoUFY+2slTl81WGtl2jchZg6HE0SDXL7x1EerhGcRFMvV4fvMIMT/tXQOWsvVdDh7gbokNs/dGLszEQKC7r08AUyOJZfDZ2z3lIHnUmWQW7/xxKKsTMTKSzoMj8LZHDGvhpGZ+2lDkaTLIPc/mEUY2cmVVgwFocvkMEh+WronPWWOuhMUgxy+4dOjJ2ZSGFBVx2+2wxOuVdD56yx1EFnkl+Q2z90YrzMRAoLuvrwRTH01aH2MDtnjaUOOpP8gtz+oRNDZCZSSNA1y9XhO8zgnHk1dM66Sh10JskFuf1DJ4bITKSwoEsPXwhD599poXPWVeqgM0kuyO0fOjFEZiKFBV3mLIQ5vAfqJRd3XaUORpPkgtz+YRRDZCZVWDAWmfMB/cEw6hUXd42lDkaT4oLc/mEUw2UmVVgwVof3QDrCX42ds7BShR3d3gAeZfePnjzHNDjRpVnWU2thELSbO7S+vS+l325u325efrz81/8PUEsBAhQAFAAAAAgA03hRW6D7NLgpBQAArCYAABcAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2RlZmF1bHRzMmQueG1sUEsBAhQAFAAAAAgA03hRW80Hp1d3AwAAYBEAABcAAAAAAAAAAAAAAAAAXgUAAGdlb2dlYnJhX2RlZmF1bHRzM2QueG1sUEsBAhQAFAAAAAgA03hRW0XM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAACgkAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAAACADTeFFbecmeHMVFAACwnwQADAAAAAAAAAAAAAAAAABYCQAAZ2VvZ2VicmEueG1sUEsFBgAAAAAEAAQACAEAAEdPAAAAAA==", +}; +// is3D=is 3D applet using 3D view, AV=Algebra View, SV=Spreadsheet View, CV=CAS View, EV2=Graphics View 2, CP=Construction Protocol, PC=Probability Calculator DA=Data Analysis, FI=Function Inspector, macro=Macros +var views = {'is3D': 1,'AV': 0,'SV': 0,'CV': 0,'EV2': 0,'CP': 0,'PC': 0,'DA': 0,'FI': 0,'macro': 0}; +var applet = new GGBApplet(parameters, '5.0', views); +window.onload = function() {applet.inject('ggbApplet')}; +applet.setPreviewImage('','https://www.geogebra.org/images/GeoGebra_loading.png','https://www.geogebra.org/images/applet_play.png'); +</script> +</body> +</html> diff --git a/tutorials/module_3/geogebra-newton-raphson.html b/tutorials/module_3/geogebra-newton-raphson.html new file mode 100644 index 0000000..8bb4ee4 --- /dev/null +++ b/tutorials/module_3/geogebra-newton-raphson.html @@ -0,0 +1,56 @@ +<!DOCTYPE html> +<html> +<head> +<meta name=viewport content="width=device-width,initial-scale=1"> +<meta charset="utf-8"/> +<script src="https://www.geogebra.org/apps/deployggb.js"></script> + +</head> +<body> +<div id="ggbApplet"></div> + +<script> +var parameters = { +"id": "ggbApplet", +"width":858, +"height":590, +"showMenuBar":true, +"showAlgebraInput":true, +"showToolBar":true, +"customToolBar":"0 39 59 || 1 501 67 , 5 19 , 72 | 2 15 45 , 18 65 , 7 37 | 4 3 8 9 , 13 44 , 58 , 47 || 16 51 64 , 70 | 10 34 53 11 , 24 20 22 , 21 23 | 55 56 57 , 12 || 36 46 , 38 49 50 , 71 | 30 29 54 32 31 33 | 17 26 62 , 14 66 68 | 25 52 60 61 || 40 41 42 , 27 28 35 , 6", +"showToolBarHelp":false, +"showResetIcon":false, +"enableLabelDrags":false, +"enableShiftDragZoom":true, +"enableRightClick":false, +"errorDialogsActive":false, +"useBrowserForJS":false, +"allowStyleBar":false, +"preventFocus":false, +"showZoomButtons":true, +"capturingThreshold":3, +// add code here to run when the applet starts +"appletOnLoad":function(api){ /* api.evalCommand('Segment((1,2),(3,4))');*/ }, +"showFullscreenButton":true, +"scale":1, +"disableAutoScale":false, +"allowUpscale":false, +"clickToLoad":true, +"appName":"classic", +"buttonRounding":0.7, +"buttonShadows":false, +"language":"en-GB", +// use this instead of ggbBase64 to load a material from geogebra.org +// "material_id":"RHYH3UQ8", +// use this instead of ggbBase64 to load a .ggb file +// "filename":"myfile.ggb", +"ggbBase64":"UEsDBBQAAAAIAHh5UVug+zS4KQUAAKwmAAAXAAAAZ2VvZ2VicmFfZGVmYXVsdHMyZC54bWztWt1y4jYUvu4+hUZX7UXANjjATrw72Z3pNDPZ7E6T6fRWGGHUCMm15AB5+h5JxjYh5MfABrrLBfKR9Xe+7+joSPLZx/mUozuaKSZFhP2WhxEVsRwxkUQ41+OTPv744d1ZQmVChxlBY5lNiY5waEqW9cJW0Bp4HZNH0jTCMSdKsRijlBNtqkR4hhGaK/ZeyCsypSolMb2OJ3RKLmVMtG1lonX6vt2ezWatZX8tmSVtaFK152rUThLdghQjGLRQES4e3kO7K7VnHVsv8Dy//feXS9fPCRNKExFTjEChER2TnGsFj5TTKRUa6UVKI5xKJjRGnAwpj/A3I6Ffxxmlv2FUVAKcPPzh3S9naiJnSA7/oTHk6SyHpot6VmibMvD6s+QyQ1mEez2MAFaTDCMchCHAxdMJibDnCnOyoBm6I9BCkUNyLWNb3+aOCVdFw7anL3JE3ZtuUV4w4AfgREpTYMJr+RiplNIRjBoXOsIDELOwHNdatKpfs/uixbCeqxe8yC4GFkuZjRSaR/iKXGG0KNJ7l0KRs3YB7MsgHtGUihEUWsHZb4SzD/wYoH1vYJH2/cNGumjxTZE+PR6kd40z6LAHoL+KOrxBM3gDgNPAa9KfLmMF3wvxJ01g1HWUO8eD8lFgvGrD3UboOgcB/4eHrAXLYajMPwQucppyOv++wHMmKhAvrVCCHjSLNOqgm6DsLVwG9PsY6EZbB5+esPhWUAWRHJhFWck8/MFGsELZxiSEikwDnn6v71qg/4oV0hhwxqDM1kSMcxEbrUpwP+fZXZ2NTtd7Cz6qNhvPgD2RsRlLRRMjlbhcL+XKtJsFdz+wactcc9PphdCw8wLAYJhqTa9bStMb6OiruMmIUGb79dCMYCOU1X1YwUkxBlH4xPVXW8ytjCyesoXwGGzhf2gJO/CW4o5kJU91TptFYxvjhRYYyRsT+4qlow7E9oHTMRv3VkZ02swxBF73cfRavQM2ojtQT1Yw/FWIVfhxFMHg9/SSj0TwsLJRxYjYwX6IL5LajP62lEs+eo6P7dXYzGgNrZUta9ixpIbQ3AMD9z3387sDz/dP4eThYO3dILyy+TEQu4wKYxcl7hPjg5g1r4kzm4Vvm3mIpTCH9ctNj5NKBro/vc6rYjPKEiqcKwfH49k2FpBAy/dGMrckc9/KC0jg7b1JINtWB60yNkfnrsa5K3geuKTjkq5LwgK9Z5hNwVpqsfeDRaXb8Iz9iDzQEcXjh2Q8Ip/SrOYYrpZyaTuhcw2gQ756GqY4GwHZUwZwngDOUwIrsInlh0ryXMPVH9yoierqzxncjI30xARvML4xmxtiHXpoIjN2L4UuwULGXs+5vSR8nungqeD0RW5rk1FvNuGasW63ShKR8Go2njuposDdLNhC66eSTzMDA7HEnLaCfsfvhx2v5/cGYf/0hUT5/Yoo92JLnjbNSOBvfUaSLK4OZyE03kAlELdTMovV2vN73bATDILQHwy68ABj3/Ue8vcyo9oPNVuMg77FwiQARQdGuOMjSGsFa0X3drrIZZyr6szcSSVIYJaNouqtUdrjCkbyOeOMZIv1nvaGsqbzKnC4sULtE4gDDAs3qwKwJ9XQLpxU+87AKTNmgKKA71PgDMJ2wsQnEt8mmcxFYd31MHwnqhdr0CHuz4ZScgo76aVan5Zy7V57LQLYBFCxku/XTT0LEnwKFN8O5Xxl2Xrmdk5Vk+DSCrUL50cmwUsU3bQ0nby5NTQ53nvlVemjsUqdgHbt66z28lOwD/8BUEsDBBQAAAAIAHh5UVvNB6dXdwMAAGARAAAXAAAAZ2VvZ2VicmFfZGVmYXVsdHMzZC54bWztWM1y0zAQPsNTaHTHP7Gd1p26TAYOMAMMDBeuqr1JBI5kJCWO+2q8A8/E6qetAwWaTihTBh+8kta7K337eS359Ol21ZINKM2lqGgaJZSAqGXDxaKiazN/ckyfnj0+XYBcwLliZC7VipmKFvbJK7simkRlktkx1nUVrVumNa8p6VpmrElFe0rIVvMTId+wFeiO1fC+XsKKvZI1M87L0pjuJI77vo8u40VSLWJ0qeOtbuLFwkQoKcFJC13R0DhBvzvWfebsJkmSxh9ev/JxnnChDRM1UIILamDO1q3R2IQWViAMMUMHOHUpeJ1hjJadQ1vRl8LgKqG2UyT1Wm3QPhhXNEuLhJ49fnRaS6kaTeS2ooiBHLy48KJHYBEsr9t43cbrej/Y+8HeDcbWoV7Knsjzjxi4okatMWqYkOu4Z1D9TLZSEVXRCUbAjKUJynOU5QRT0XZLhh6jNPFXmpdJmk7Tibdv2QCKbBg6DVHZ2sjauXSjc9bqEMsFfy0b8Jo8PC84ssEiow1g3jG47gAa1/J44rKQBIPj09gfF/DeDC0Qs+T1JwEa81mMjGzjBW8asLT0NvBZeBNt7xXtmEIqGYVE83q+ALFBxKTSZJu4SQwo0NuF7Vl6blPXH1Cg9sIKHHbmuBLFt2TmLWb+wdnEi8yL3IsiIHYaB/L8QCO25Tp7fpW0WeiOmJNkjjn7JhrDI5J4xyzb1y3k+E9lFMnzt3JKQhtw1V+//Bpu92LWTBnQnInR6/vMKr5HfvoQkP+TuP8cSPQvYITfW9ffwQ/L6p3wK0sH4CRFiRA6eVWiikPBOGf22xVc/LTy3YRYAOq2TF1rUF4Tir8v5b6Sh+r+2zLRyXZYQqOkuEZ8NHQNehZAv8s7tm+i0iJzmSr8t2TE9SgPeBblNMmn+cGydlfy74XsTNVLvoIG2C60yIr7gnaS+u90fuSgteLfwPbtgLWaY90Y43qPlA3F5fiH8vzAYVVcr3ZBTe+RrFNfsT1ZS+w9QFQFmKt1vrHtcVEt/hfVfbD8vGaN25qFpb677I8x9QQ9ZGWc5qW9jqZpcZzmeNQ5EECH2LDyVdfymptbHUFuPIDYQX/KGLy4QBGi7XsmIbOpF0deHHtR/nYjotdqjkfym7bQQbWb5PxuSUa7GzfR0dFtWX/t+F620WOjX26j49Efhfjy98XZN1BLAwQUAAAACAB4eVFbRczeXRoAAAAYAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSoruUCAFBLAwQUAAAACAB4eVFbeox2lHBGAADEpgQADAAAAGdlb2dlYnJhLnhtbO19XZMcuXXls/0rKvig4NjDmvz+sIZ2cMo21xGSpbC0G9LLOppkkdMrsptmN2c4Cv34PbduVvZFZ2b1vVUoDjAEYzhNVALZAM5BJnDOLeDbf/n07u3qh+2Hm8vrq6eP8nX2aLW9enn96vLqzdNHH29fP+ke/cs///23b7bXb7YvPlysXl9/eHdx+/RRTTnHcvW6WPdZSZ9dvH//9NHLtxc3N5cvH63ev724pSJPH/34aHX56umjKtsWZd43T17k2cWT6nWRP7m4eLV98rp+3b6uuxevuxe4yerTzeU/XV3/58W77c37i5fbP7z8fvvu4jfXLy9ud7/v+9vb9//0zTc//vjjel+z9fWHN9/gl9988+nm1Tdv3rxY4+ejFZp3dfP00fCPf8J9ndI/lrtyRZbl3/zpt7/h3/Pk8urm9uLq5fbRipr+8fKf//7vvv3x8urV9Y+rHy9f3X7/9FFXd49W328v33xPfdGjyt9QpvfokPfbl7eXP2xvUFQkd42/fff+0S7bxRVd/zv+1+rt2K5Hq1eXP1y+2n4AFI9W1x8ut1e3wyWkd7/im33hb3+43P7Id6F/7X4BMv1weXP54u0Wv+zDRzTg8ur1B/Ti00evL97eIH1z+9Pb7YsL/ILhg7tfXuLq5V+Rddc4bi9umWVf098Gf6tsaKj4ldWj1e319dvdLbPV3/62KrIiW31NP3L+UeBH0/CljD/LSv5Bl/Cj4h8156m4eMVZK85TcZ4KlRxbOLTA0ET0Dzexqfq7JhZ9/XXRLzexOOl3jt1a5DX66uLF00fPfvP83777r2d3NSi7r4uy+Lqo5ysAOMY+Bhb56m8r/Cj4R7mibsM/0H30oxqS6HH60e5+5DtokOz4056SjZ++zGvUeN8StGD33+7vpCH55/+VpQk9HjSn/cbGGRKfv48L0MXH76w69e+ssr793N3c4qOZJw//xBDZ/fQDfk+/XlerOsevlNVa5asaI7Ze5T09B2k4Fqu8XlX4pMMn7aqkz+q8WpUrypKXq93DrtqN3AZX6DL+X9fZKqeHIhq2wlMVjSzoOVrXqxrZWipLz4QGgxulMvyl3KgR/pb0WVni7+6zssJferLWuFHNt0E96rLZ/ave/Z+eFTV+S03dutpdwmdVj19HH9RtvipRE6TbbIX74vao8a41eIbTf/mKH9/tquhWu7vu7p+d9kRVM/Tbb/bvyG8HSFY331Pe4d14u32HuQHqjibsnoiMFUBCJRmwlnp0Dxg6uFs19HNAjTDrHNRqwpSg22PX0KfoH3rsrnbdziAW1R5H/HuHJKHsILnr80p0O70Y0en4nLsdv76QHV80q4buBy7hhdsQfgVuWayAV7MbEgugYKJ2fXM59u7327eYxA39vuvIy6v3H2+dznv5jiY0u3/eXt/L/er65V++Gzt7uLK9uMFc6S4bZjJ30yOe2Tizp7/79u3Fi+1bTET/QFRYrX64eEtv091veH19dbvaPzMK+uzbb3YTtW+3H1++vXx1eXH1fwD9fpr0nx/fvdh+AOfwz2tq4u4mVHw1O6Or+oqzvLy+/vDqDz/dgCmrT7+9RPc8foyu+tPqyapet+VXq39Y/fX6+t2fvsIE87cXn8bL/zi5/NNd6T+jdLGu91f/vLs6Fv4zCpfO1V1Ntj/8YXt7i964WV182oK23PdvPtBTZ+hVSvzHzXfXb+8+en99eXW7uXh/+/HDbkoPdD9QG59dvXm73XXs7jPMe1/+5cX1pz/wTAWEoHv98af3SGVcgRdvNtdvrz+sMCKLGjMZ3Gz3E/MZ+rnLQzUbc2EQIg/+jxzDPeim4/W8x2OAqkQ/kYd+7nIBc67a0FLUj5uZD7e5+HR5s3va4uaSkzvC0Cz649Xl7W/2idvLl3+5aynlZzrs+9C95ZDl5Ft++809Jn77l+2Hq+1b+mUfb7Y35b8yoe+q8BKcvrz6eP3xhq8wgrtLKPD7i9vvn129+q/tG4zS31/Qs/IWv/D+TV5tX16+Q0H+fOwwQvt/owX88avtmw/bfcPf7pZP3N+7q9Sp7z9sL17dfL/dYjAM9+ChILPtWrlv1beY2b7d7t6D74jpuMs74jTd7XaLBwTnv3n54fI90Xj1Ag/0v2zvmPrq8obuMH5AudElN2gbHgnXV+j0W+pwLDE/3n5/DQKhzMUtfULD/u32HRZLq9sdZa8+vtt+oPXnAB8Nq93KCzX/KOuPhwAwwqNhV+cn6C+uNf3j4sXN9duPt1h8orOu7hafTIzhsYG5NIY+ZiMtFhQ/Id1iIvT68hO1gzOiqpd/BbR3kO4I84z73YH5jvi334NhWOeBUDSfGMbh7h//6/LVq+3uOc31x71W1y/+H56b9zh7RwpcXhiVq4u3779HJbL1cLu3Fz/Rg1J00O5uv3v9+mZ7Sw19Qkswaqi4+tvrV26nXlyBhDvQBuzXaAWe7dQrGDBjeyAP/LR7LN1B/s2A5IOY7h6O90HN9+2QsFLjGNZCDWsPOFGgK1ECrS0K3OIXDWuNCtlhpaeff1j/NIHVK6g1/aS24jW3iCl/EjWk3Eq8zH9mSGlGdN6n707OQVurQ6P0i0XU/7P3uzxfGqKyS/YrNy4kOvv0Trlr9pDvfrO1NEaV0dbdDOPZ27fXP25fTWZfFx8/Xb69vPjwkzvZcrrrE2ZMkLzx6/ddhBXPJ9TjsVgwNHcLgq9X42S/WOfjSuHPX2ExwLXdzdx5peSCMVwYf89x3Q4tlWfftBh3u17Z8cOnu+rQuoE/HVYC/OndbFGup274hbPG45fYvC5pSvHXAcnDvQrNlHv10+PvvkLfPQZPRJ/+hE+tHfjsyA6UvN0thLx037C+vd99cg6+7z78yge67+AYfjYdw/uHchrDQ2sHtr1+/Omr1dPVp//7GAP1yepxAcohUXxFFPyEvxmBwRV8/fFqV5Hd3V0Exkt39z/8FtkrJz+M40fR6Tb6nbHL7W9UicbL63fvLq5era52ouDvd0P2Tom6yJ4++vQMa/ahWz7ejp/+97AwHW7wwOin7Me8yvOCJZDdT9MT4O51PiwtTFPuGXzwjzl8jnyw4G2UlUXVZnXXFWVdkLCPWqKuc48YF6V/xQPmB9T2h+09qF5PYHr9qwu8/n59GKrpgBlKeX1K2QbMaax+6JGcnsgPvP/R07tH8rMcj132xB/q1GJhqqqmxpmagrc2N6VQN6W835RBMf25m4KpJDelVDelut+U4QH1czcFj3FuSqVuSn2/KdaX9Zmagvk1N6VWN6W535RhOv9zNwUvIW5Ko25Ke78pw6r5524KbCZuSqtuSne/KW0YTYEcwU3p1E3p7zelC6MpJDlxW3p1W1DmXmP6QBpz95bUvyZRKMz3ZD6+KGGKq1sT6qsyH9+VCBlQtybUtyWFtA2t0b8vUSjMFyYZAkNr9K9MFArznZmPL01EoqhbE+prMx/fmwh0Ubcm1DdnPr46EVGkbk2oL09y4IbW6N+eKBTC2/OBSqYV+YPgj5MNhLGpwQ91slHcrcr1kw0UCnOyUYyTDcQXqlsT6mSDpNahNfrJBgoFOdnYoPq7xnx6DA0aptXDbUGR+zSbirXW586ZWrd/KGxyGCavH2/yr1bfrAb5llKq9k4fEuu6y7quagsE5nRVhcdIIO3dPzY2Bbe3cNpb6No7eYwgnCmrEY6NiOmy7esWgSuBtHf/YNmU3F4YY6K9pa69kwfNk2zdd32PAO6irfqsrRHXEUiD98+eTcUNrpwGV7oGT55FaHCN6Pm8apqibdo8b/WLhzM3eL8W2tTcYEQkiwbXugZP1kZoMJ5TdVVmDVG7oS+OBNLg/XJp03CDEa0hGtzoGjxZPlGD8aWsBg+uPsvLpoAyEUiD9yuqTcsNbp0Gt7oGT1ZYaDDeQ3nTIy6hafKiL/VTuzM3eL/o2nTc4M5pcKdr8GQRNjS4buqsK/GzbYIZw6Oquem5xb3T4l457Zis1GSTEfFcFZV+UnXuJu/nVaj2MPXI3LmHdrI1mW2F3Oq7+dZ+wnVvxqWcck1V4JBbPc66oAxzq915F5K6Vk9mXiG3epx7QUHmVruzLyR1rZ6bfwXb6nECBqWZW+1OwZDUtXpuEhZsq8dZGBRpbrU7D0NS1+q5mViwrR6nYlCuudXuZAxJXavnpmPBtnqcj0Hh5la7MzIkda1empMF2epxUgYlnFvtTsuQ1LX64MQssFaPijmqPbTanZohqZNIYpqb0ZeoBpVkmJsV7twMSV2rY5qbjQI5qj202p2bIalrdUxzs1FIR7WHVt/TxJRzs6m4HnKrx7kZBHdutTs3Q1LX6pjmZqMwj2oPrXbnZkjqWh3R3OwZfUt+sCP00QIoFGS0wGZsDUAYMHRnmkjqMIxopvmsGGMksHeGGsNAYyQ2Y2sAwoChO29GUodhRPPmZ7Tf0YChPjIEhYKMDNmMrQEIA4buKgBJHYYRrQKeFWM8DPakUWMYaDzMZmwNQBgwdNc0SOowjGhN84y2Shgw1EcBoVAIUUAzhu64QkNrGEN3hYakztSNaYUGr2bv6w4rtNJdoSGpa3W4K7QHCJkivh4c6GPEF/YeUw/0QCO+NmNrwNmB8u7yHEkd5SNanj8rxzg3bCGnxjDQOLfN2BqAMGDoig1I6jCMSGx4Vt597U4f3YdCQUb3bcbWAIQBw3tBRUrpZNrCkDEcYxqxN6Qaw1BjGsfWAIQBQ1cIQlKHYUxCUDkKQdhNU41hqELQ2BqAMGDoCkFI6jCMSQgqRyEIe66qMQxVCBpbAxAGDF0hCEkdhjEJQeUoBGFzXjWGoQpBY2sAwoChKwQhqcMwJiGoHIUg7HmsxjBUIWhsDUAYMHSFICR1GMYkBFWjEISNtdX7QYQqBI2tAQgDhq4QhKQu2j0mIYh2Uhzi3QchqHKFICR1rY5VCJpWPAlB9wf6KARhU3n1QA9VCBpbA84OlHeFICR1lI9JCKLNAwcM9UIQCoUpBI2tAQgDhq4QhKQOw5iEINRkj6FhA6ZQhaCxNQBhwNAVgpDUYRiTEFTdbTylF4JQKEwhaGwNQBgwvPeFOaUQNG1hyBiOQhAOi1FjGKoQNLYGIAwYukIQkjoMYxKCqlEIwsk7agxDFYLG1gCEAUNXCEJSh2FMQlA1CkE4iUmNYahC0NgagDBg6ApBSOowjEkIoh39Bwz1QhAKhSkEja0BCAOGrhCEpA7DmIQgOsxvwFAvBKFQmELQ2BqAMGDoCkFI6nYBCFYIcrdz/sP2DX1+by9nfDfl6xWJPxf5kNht7zEcUya2eP7XYffjpd2db4bb7/sF+TXboe9+DQ6GerU7r253nsfvhtz/gROxdgLJzepXb25/vXr8HR0OQN///ccV9lY+vIU/nYdw3JbQx/b8cYeObP/niovsTkh8+ujy3fu3ly8vb8f+f0vyz39c0elgXK3peWJ/2W7f0+Fuv7v644eLqxs6ofl+1XAC8ge5Ufir7euLj2+H37K9kieBOZfEEQU4DxpH7bR1i81L6rbeHd47biXerKsSu9bgpL08a6qy3S0+HxqBoyiJoxB5UwpXlERSNwKDFSXVI3AYdMMoLHZD8v4I/LfhZETtCET+zzwC9ycJnrgpexqBsyNwYQDSpjNFga1IyjKrceJuh01naEg+qdbYwKJquq7Pmq7osEGLUTOfjqsvXDM/2F13g2WiiM8cj4Vq7g7HommI8nAswEqnaWH9ANQ7vN9+cWdjGfAWZ7TMnpjx0LtndAdwqC+/e1x3AEnduycmd2BsNYa2fgYfqsNTj+4AzkRmDF13AEkdhjG5A2OrAYwew1Adnnp0B3CSNmPougNI6jCMyR0YWw1g9BiG6vDQpG/AcHAHatcdQFKHYUzuwNhqAKPHMFSHp77bH3C/QeC9HQKV7gBuFBGGd2eq6B2eaQsDcXjq0R2oB3egdt0BJHUYxuQOjK0GMHoMQ3V46tEdqAd3oHbdASR1GMbkDoytBjB6DEN1eOrRHagHd6B23QEkdRhG5Q6MDg9arcYwVIenGd2BenAHatcdQFK3ZW6w7sAMhmOrAYz+kLEwHJ4HKpmkrAcpP8rxzSDHN64cj6SO8sHK8XOtHoWgZhCCGlcIQlLX6piEoLHVGBj6gR6qENSMQlAzCEGNKwQhqcMwJiFobDWA0WMYqhDUjEJQMwhBjSsEIanDMCYhaGw1gNFjGKoQhJ3S9xgOQlDjCkFI6jCMSQgaWw1g9BiGKgQ1oxDUDEJQ4wpBSOowjEkIGlsNYPQYhioENXdnX+wPv7h3+oVSCMKNIsLw7lRhvRA0bWEgQlAzCkHNIAQ1rhCEpA7DmISgsdUARo9hqEJQMwpBzSAENa4QhKQOw5iEoLHVAEaPYahCUDsKQc0gBDWuEISk7iihmISgsdUARn9EewxCUJuEoAcpPwpB7SAEta4QhKSO8jEJQe0oBLWDENS6QhCSulbHJASNrcbA0A/0UIUghB3vMRyEoNYVgpDUYRiTEDS2GsDoMQxVCGpHIagdhKDWFYKQ1GEYkxA0thrA6DEMVQiiCOQBw0EIal0hCEkdhjEJQWOrAYwew1CFoHYUgtpBCGpdIQhJHYYxCUFjqwGMHsNQhaB2FILaQQhqXSEISR2GMQlBY6sBjB7DUIWg9u5c1/3BrvdOdlUKQbhRRBiOQhBarcYwVCGoHYWgdhCCWlcIQlKHYUxC0NhqAKPHMFQhqBuFoHYQglpXCEJSd8RyTELQ2GoAo8Zw2sIAhaAuCUEPUn4UgrpBCOpcIQhJHeVjEoK6UQjqBiGoc4UgJHWtjkkIGluNgaEf6KEKQd0oBHWDENS5QhCSOgxjEoLGVgMYPYahCkH0DdcBw0EI6lwhCEkdhjEJQWOrAYwew1CFoG4UgrpBCOpcIQhJHYYxCUFjqwGMHsNQhaBuFIK6QQjqXCEISR2GMQlBY6sBjB7DUIWgbhSCukEI6lwhCEkdhjEJQWOrAYwew1CFoG4UgrpBCOpcIQhJHYYxCUFjqwGMHsNQhaBuFIK6QQjqXCEISR2GMQlBY6sBjB7DUIWgfhSCukEI6lwhCEkVhrhRPBiOrQYwagynLQxQCOqTEPQg5UchqB+EoN4VgpDUUT4mIagfhaB+EIJ6VwhCUtfqmISgsdUYGPqBHqoQ1I9CUD8IQb0rBCGpwzAmIWhsNYDRYxiqENSPQlA/CEG9KwQhqcMwJiFobDWA0WMYqhDUj0JQPwhBvSsEIanDMCYhaGw1gNFjGKoQ1I9CUD8IQb0rBCGpwzAmIWhsNYDRYxiqENSPQlA/CEG9KwQhqcMwJiFobDWA0WMYqhDUj0JQPwhBvSsEIanDMCYhaGw1gNFjGKoQ1I9CUD8IQb0rBCGpwzAmIWhsNYDRYxiqEJRnoxLUD0pQ7ypBSKpApDvFg+Jdu4GNGsaZNv4cYpBuR3begP1uN3ZAW8ydiWDckR35ve/IXtztyP7Aei2dieD9TIR8nZVlVZZF32V1V1Q5WjaeiZCvmxInIXR93jUFdhw8yMQ/bj/dp+Gv/ufj9e2vP/139pT/xXx8NmHhvz9wMsct3XrPMGRWU1A9ML3RaAfJ768vUXfq3po2+UZ/Fmt0MvepTdz9DoDMC1Nfqrj7QHdNNKDUXYe6ayK3pO461F0TZSN116HumogIqbsOdddkvZ6661B3TZbGqbsOdddkFZq660B3FZPFXuquQ9018cWHtVzqrtnumszqU3cd6q4lZzd112x3TWb1qbsOdddkVp+661B3TWb1qbsOdddkVp+661B3TWb1qbsOdddkVp+660B3lZNZfequQ901mdUP0Vipu+a6q5p012B5pu6a667p6bxDjFHqrrnump5KMoTzpO6a667p3p1D5Ezqrrnumu5wMQSppO6a667p90CGWJDUXbMTiYnelSYSh7pronel7jrUXUtfGkjdNdtdE70rddeh7proXam7DnXXRO9K3XWouyZ6V+quQ9010btSdx1SJCZ6V+quQ901maYmAedQd02mqam7DnXXZJqauutQdy19jTR112x3TaapqbsOdddkmpq661B3TaapqbsOdddkmpq665ATNJmmpu461F2TaWoyzg5112SamrrrUHdNpqmpuw5112SamrrrUHctbSySumu2uybT1NRdh7prMk1N3XWouybT1NRdhyJwJtPU1F2HumsyTU0BS4e6azJNTd11qLsm09TUXYe6azJNTd11qLsm09TUXYe6a2mrudRds901maam7jrUXZNpauquQ5HPk2lq6q5D3TWZpqZA8UPdNZmmpu461F2TaWrqrkPdNZmmpu461F2TaWrqrkPdNZmmpu461F1Lmw+n7prtrsk0NXXXoW+cTaapqbsOdddkmpq+oHeouybT1NRdh7prMk1N3XWouybT1NRdh7prMk1N3XWouybT1NRdh7prMk1N3XWou5aOo0jdNftN/8k0NXXXoe6aTFPTxgiHumsyTU3ddai7JtPU1F2HumsyTU3ddai7JtPU1F2HumsyTU3ddai7JtPU1F2HumsyTU3ddWh7/8XTyVJ/zfdXOjT/8GFery+3b1/dO9Hr9eTsrt21764/7Rpx+AgvvuG+M+8KHj7O6+64s1NP8/rd69c32925XNhPnk7lwtlaB876WjwR7uXF+x1M3MuPP331lD9/fY3m3oBmr0fi3Fz+dfvb3fFf7h+cCkaXUAUczjscErev6vbqze33AzOGXtWzOpHasnly6i3L1juptyzfAE+9ZfkiUuotSzxs6i1LWEbqLYs7kHrLskhNvWU/m7qUZ1MjgbOpy7mzqXdb1RnOpuYJitezqcu7s6mHjfPS2dTI9XnOps7WdV6UeZk3fdW1dQ1b/O5salxsmrLLyr4tsjrPBrJYuVhJLiIBLlZzXNztR2PgIk//vHKxuuPiAyfpJy765mK5roosz6oir+q+qXCm0x0Ty3XZ1W1ZFE1eNFnfwnQ5ioq1pCISoGI9R8Xh9moq8tzaKxXrOyoO34BPVPxcVMzWXZ2VTdu0RV10GU7BlQ/Fqi0bXGmKEkf51ziq7SgqNpKKSICKzRwVh9urqcgLF69UbO6oOHzLLVHx81Exr6q+LJqmaOuqrGt8r1WSkd7LfZ1lVd1WJR6Nx5GxlWREAmRs58i4ix43kJHXhV7J2N6RcYhlT2T8fGTMsi6v87xtG7yqi6KFP+2wMSvA1rzO8rYoszorcMrGUYTsJCGRACG7OULu4sQMhOSlt1dCdneEHKLWEiE/JyGzrMyrvmirpiuaCksY7FrichJ/+hKft12P52TW5zjm6yhW9pKVSICV/Rwrh6ewmpUscXhlZX/HysGjTqz8XKys1m0DvmHZzI/BfPsEVvgdJ/N1ldd10fdYWmNlXXTVLsNRlMwzyUlKgZQAfoaV+1+hpuXg33vlZZ7dEZMrlJj5GZ+X8sl4JOFyh3BIEeHyWcI9ELAwJdxDgQrHEC4XhBvwSoSLiXCFQzikiHDFLOF2wSYWwnF4gl/CFYJwQ/RLIlxMhHPME0oR4Wbtk9zqn6CAf8IJB4UrlAgXF+Ech4RSRLhZjyS3miQo4J9wwibhCiXCxUU4xwehFBFu1gnJrVYICvgnnDBDuEKJcHERznE7KEWEm/U7EK1rJNwZHI9cWB5coUS4uAjnOBqUIsLNehq51dRAAf+EE7YGVygRLi7COY4FpYhws54F7GQj4c7gWuTCtuAKJcLFRTjHjKAUEW7WjsitfgQK+CeccCS4QolwURGucJwGSoFwxazTUFidBhTwTrhCOA1coUS4uAjnOA2UIsLNOg2F1WlAAf+EE04DVygRLi7COU4DpYhws05DYXUaUMA/4YTTwBVKhIuLcI7TQCki3KzTgK9TGwl3BqehEE4DVygRLi7COU4DpYhws05DYXUaUMA/4YTTwBVKhIuLcI7TQCki3KzTUFidBhTwTzjhNHCFEuHiIpzjNFCKCDfrNOy/uaEn3BmchkI4DVyhRLi4COc4DZQiws06DfhKm5FwZ3AaCuE0cIUS4eIinOM0UIoIN+s0FFanAQX8E044DVyhRLi4COc4DZQiws06DYXVaUAB/4QTTgNXKBEuKsKVjtNAKdq+YtZpKK1OAwr438FCOA1coUS4uAjnOA2UIsLNOg2l1WlAAf+EE04DVygRLi7COU4DpYhws05DaXUaUMA/4YTTwBVKhIuLcO6GUMOOUPNbQpn3hDrHplByV6jkNERIOMdpoBQRbtZpKK1OAwr4J5xwGrhCiXBxEc5xGihFhJt1GrA1tJFwZ3AaSuE0cIUS4eIinOM0UIoIN+s0lFanAQX8E044DVyhRLi4COc4DZQiws06DaXVaUAB/4QTTgNXKBEuLsI5TgOliHCzTkNpdRpQwD/hhNPAFUqEi4twjtNAKSLcrNNQWp0GFPBPOOE0cIUS4aIiXOU4DZSizYlnnYbK6jSggP/9iYXTwBVKhIuLcI7TQCki3KzTUFmdBhTwTzjhNHCFEuHiIpzjNFCKCDfrNFRWpwEF/BNOOA1coUS4uAjnOA2UIsLNOg2V1WlAAf+EE04DVygRLi7CuedLDAdMzJ8wYT5i4hxnTMhDJpLTECHhHKeBUkS4WaehsjoNKOCfcMJp4AolwsVFOMdpoBQRbtZpqKxOAwr4J5xwGrhCiXBxEc5xGihFhJt1Giqr04AC/gknnAauUCJcXIRznAZKEeFmnYbK6jSggH/CCaeBK5QIFxfhHKeBUkS4WaehsjoNKOCfcMJp4AolwkVFuNpxGihFZ8/NOg211WlAAf/HzwmngSuUCBcX4RyngVJEuFmnobY6DSjgn3DCaeAKJcLFRTjHaaAUEW7WaaitTgMK+CeccBq4QolwcRHOcRooRYSbdRpqq9OAAv4JJ5wGrlAiXFyEc5wGShHhZp2G2uo0oIB/wgmngSuUCBcX4dzzqocDq+dPrDYfWX2OM6vlodXJaYiQcI7TQCki3KzTUFudBhTwTzjhNHCFEuHiIpzjNFCKCDfrNNRWpwEF/BNOOA1coUS4uAjnOA2UIsLNOg211WlAAf+EE04DVygRLi7COU4DpYhws05DbXUaUMA/4YTTwBVKhIuKcI3jNFAKhGtmnYbG6jSggHfCNcJp4AolwsVFOMdpoBQRbtZp2B+8ryfcGZyGRjgNXKFEuLgI5zgNlCLCzToNjdVpQAH/hBNOA1coES4uwjlOA6WIcLNOQ2N1GlDAP+GE08AVSoSLi3CO00ApItys09BYnQYU8E844TRwhRLh4iKc4zRQigg36zQ0VqcBBfwTTjgNXKFEuLgI5zgNlCLCzToNjdVpQAH/hBNOA1coES4uwjlOA6WIcLNOQ2N1GlDAP+GE08AVSoSLi3CO00ApItys09BYnQYU8E844TRwhRLh4iKc4zRQigg36zQ0VqcBBfwTTjgNXKFEuKgI1zpOA6VAuHbWaWitTgMKeCdcK5wGrlAiXFyEc5wGShHhZp2G1uo0oIB/wgmngSuUCBcX4RyngVJEuFmnobU6DSjgn3DCaeAKJcLFRTjHaaAUEW7WaWitTgMK+CeccBq4QolwcRHOcRooRYSbdRpaq9OAAv4JJ5wGrlAiXFyEc5wGShHhZp2G1uo0oIB/wgmngSuUCBcX4RyngVJEuFmnobU6DSjgn3DCaeAKJcLFRTjHaaAUEW7WaWitTgMK+CeccBq4QolwcRHOcRooRYSbdRpaq9OAAv4JJ5wGrlAiXFyEc5wGShHhZp2G1uo0oIB/wgmngSuUCBcV4TrHaaAUCNfNOg2d1WlAAe+E64TTwBVKhIuLcI7TQCki3KzT0FmdBhTwTzjhNHCFEuHiIpzjNFCKCDfrNHRWpwEF/BNOOA1coUS4uAjnOA2UIsLNOg2d1WlAAf+EE04DVygRLi7COU4DpYhws05DZ3UaUMA/4YTTwBVKhIuLcI7TQCki3KzT0FmdBhTwTzjhNHCFEuHiIpzjNFCKCDfrNHRWpwEF/BNOOA1coUS4uAjnOA2UIsLNOg2d1WlAAf+EE04DVygRLi7COU4DpYhws05DZ3UaUMA/4YTTwBVKhIuLcI7TQCki3KzT0FmdBhTwTzjhNHCFEuGiIlzvOA2UAuH6WaehtzoNKOCdcL1wGrhCiXBxEc5xGihFhJt1Gnqr04AC/gknnAauUCJcXIRznAZKEeFmnYbe6jSggH/CCaeBK5QIFxfhHKeBUkS4WaehtzoNKOCfcMJp4AolwsVFOMdpoBQRbtZp6K1OAwr4J5xwGrhCiXBxEc5xGihFhJt1Gnqr04AC/gknnAauUCJcXIRznAZKEeFmnYbe6jSggH/CCaeBK5QIFxfhHKeBUkS4WaehtzoNKOCfcMJp4AolwsVFOMdpoBQRbtZp6K1OAwr4J5xwGrhCiXBxEc5xGihFhJt1Gnqr04AC/gknnAauUCJcVITLM8dq2CVBOfyc4xw+NpKOSnhnHW56R7uhTol3UfGOBV/SewfmsTx3n3H/ZpTikN8724TyOyP8Fjhi8I5r+H9imkem5eusLKuyLPouq7uiytEwUO9Jtq7auqz6oqj7ouuaotyR8Um+zqui6tsiy8qqajDyj2Inq8MkDg/sZC1vwk6jbof83tkpZOIZlTix86zPwXWdF2Ve5k1fdW1dI5psx85infV11dU1aNsSgTt+VK7rrM2bqiqbIu+yrhpUOCs7WUomJXl/ntc8O40iH/J7Z6fQlGck5cTOc7LzSbmuiizPqiKv6r6pCmYnHp14nJZ12VRtUTZlWzb7Z2ef1VnV5X3dgp/F/tQa81lzfLjcHT1ZJpzQ0ygJIr//Y+bEKXOJnp+Zntm6q7OyaZu2qIsuy/GQ3NET8/UKj8ksb/McD0zEhO/oiQt93/Z5gT9gaIP8x21QzDsS39GTRcUJPY0CIvL735tYbE2c6PnZ6ZlXVV8WTVO0dVXWNbYjZ4JmdZG1RNqsyvuuK7E/0sDQDPmqtsz6tmn6DhPWI3e24K0s7ijKMuSEokbJEfn9b2oh9rRIFP3sFM2yLq/zvG3xuMyKooXLMHA0w0u+qZq6rIuywDt9WCDRlaLCI7TLwNK2Ker9ZjzmoGiOgr4jKUuXE5IaZUrk9x8PLcKhE0l/BpKCjTkW623VYFpZYaGE47n2PM2yvOjA0q7HS7/BPxELMFIVfzBV7XYla7z994eimHV1FtLvyJqz7Dlha24UOKmAf1VdiOqJr5+Zr9W6bUC5EnTE+iir8+0TYExsxQKpyvHW7/Bo7UHoruNLvHjCJaz3wdHd7LVrdteO1OQHDV7QleOzp3Q1BmNTgTPI8VKNT4SNTowndhHhKN5/TziOz54SzhiMTQX8E05E//MISISLi3Bs/+TC/8kXDKDc6gChgH/CCQ+IR0AiXFyEY0cnF5ZOvuDp5FZTBwX8E07YOjwCEuHiIhybNLlwafIFmya3+jQo4J9wwqnhEZAIFxfh2HbJhe+SLxgvudV5QQH/hBPeC4+ARLi4CMdGSi6clHzBSsmtXgoK+CeccFN4BCTCxUU4tkVy4YvkC8bI3hvUE+4M1kguvBEeAYlwcRGOLY5ceBz5gsmRW10OFPBPOOFz8AhIhIuLcGxT5MKnKBZ8isLqU6CAf8IJo4JHQCJcVIQjdlEYtnAaigWnobA6DSjgPxRbOA08AhLh4iIcOw2FcBqKBaehsDoNKOCfcMJp4BGQCBcX4YYvmginoVhwGvAdAiPhzvFlE/ltk+Q0REg4dhoK4TQUC05DYXUaUMA/4YTTwCMgES4uwrHTUAinoVhwGgqr04AC/gknnAYeAYlwcRGOnYZCOA3FgtNQWJ0GFPBPOOE08AhIhIuLcOw0FMJpKBacBnzHyUi4MzgNhXAaeAQkwsVFOHYaCuE0FAtOQ2F1GlDAP+GE08AjIBEuLsKx01AIp6FYcBoKq9OAAv4JJ5wGHgGJcHERjp2GQjgN5YLTUFqdBhTwTzjhNPAISISLinDELtpSQzgN5YLTUFqdBhTwv62GcBp4BCTCxUU4dhpK4TSUC05DaXUaUMA/4YTTwCMgES4uwrHTUMo9rZY2tTLvanUGp6EUTgOPgES4uAg37FIlnIZywWkorU4DCvgnnNyqKjkNERKOnYZSOA3lgtNQWp0GFPBPOOE08AhIhIuLcOw0lMJpKBecBmxiZSTcGZyGUjgNPAIS4eIiHDsNpXAaygWnobQ6DSjgn3DCaeARkAgXF+HYaSiF01AuOA2l1WlAAf+EE04Dj4BEuLgIx05DKZyGcsFpKK1OAwr4J5xwGngEJMLFRTh2GkrhNFQLTkNldRpQwD/hhNPAIyARLirCEbtoe2ThNFQLTkNldRpQwP8WycJp4BGQCBcX4dhpqITTUC04DZXVaUAB/4QTTgOPgES4uAjHTkMlnIZqwWmorE4DCvgnnHAaeAQkwsVFOHYaKnkgxtKJGOYjMc7gNFTCaeARkAgXF+GGIy6E01AtOA37QzT0hDvHMRfynIvkNERIOHYaKuE0VAtOQ2V1GlDAP+GE08AjIBEuLsKx01AJp6FacBoqq9OAAv4JJ5wGHgGJcHERjp2GSjgN1YLTgOOqjIQ7g9NQCaeBR0AiXFyEY6ehEk5DteA0VFanAQX8E044DTwCEuHiIhw7DZVwGuoFp6G2Og0o4J9wwmngEZAIFxXhiF100p1wGuoFp6G2Og0o4P+0O+E08AhIhIuLcOw01MJpqBechtrqNKCAf8IJp4FHQCJcXIRjp6EWTkO94DTUVqcBBfwTTjgNPAIS4eIiHDsNtXAa6gWnobY6DSjgn3DCaeARkAgXF+HYaajladpLx2mbz9M+g9NQC6eBR0AiXFyEG47HFk5DveA01FanAQX8E06ekZ2chggJx05DLZyGesFpqK1OAwr4J5xwGngEJMLFRTh2GmrhNNQLTkNtdRpQwD/hhNPAIyARLi7CsdNQC6ehXnAaaqvTgAL+CSecBh4BiXBxEY6dhlo4Dc2C09BYnQYU8E844TTwCEiEi4pwxC4QrhFOQ7PgNDRWpwEFvBOuEU4Dj4BEuLgIx05DI5yGZsFpaKxOAwr4J5xwGngEJMLFRTh2GhrhNDQLTkNjdRpQwD/hhNPAIyARLi7CsdPQCKehWXAaGqvTgAL+CSecBh4BiXBxEY6dhkY4Dc2C09BYnQYU8E844TTwCEiEi4tw7DQ0wmloFpyGxuo0oIB/wgmngUdAIlxchGOnoRFOQ7PgNDRWpwEF/BNOOA08AhLh4iIcOw2NcBqaBaehsToNKOCfcMJp4BGQCBcX4dhpaITT0Cw4DY3VaUAB/4QTTgOPgES4uAjHTkMjnIZ2wWlorU4DCvgnnHAaeAQkwkVFOGIXCNcKp6FdcBpaq9OAAt4J1wqngUdAIlxchGOnoRVOQ7vgNLRWpwEF/BNOOA08AhLh4iIcOw2tcBraBaehtToNKOCfcMJp4BGQCBcX4dhpaIXT0C44Da3VaUAB/4QTTgOPgES4uAjHTkMrnIZ2wWlorU4DCvgnnHAaeAQkwsVFOHYaWuE0tAtOQ2t1GlDAP+GE08AjIBEuLsKx09AKp6FdcBpaq9OAAv4JJ5wGHgGJcHERjp2GVjgN7YLT0FqdBhTwTzjhNPAISISLi3DsNLTCaWgXnIbW6jSggH/CCaeBR0AiXFyEY6ehFU5Dt+A0dFanAQX8E044DTwCEuGiIhyxC4TrhNPQLTgNndVpQAHvhOuE08AjIBEuLsKx09AJp6FbcBo6q9OAAv4JJ5wGHgGJcHERjp2GTjgN3YLT0FmdBhTwTzjhNPAISISLi3DsNHTCaegWnIbO6jSggH/CCaeBR0AiXFyEY6ehE05Dt+A0dFanAQX8E044DTwCEuHiIhw7DZ1wGroFp6GzOg0o4J9wwmngEZAIFxfh2GnohNPQLTgNndVpQAH/hBNOA4+ARLi4CMdOQyechm7BaeisTgMK+CeccBp4BCTCxUU4dho64TR0C05DZ3UaUMA/4YTTwCMgES4uwrHT0AmnoV9wGnqr04AC/gknnAYeAYlwURGO2AXC9cJp6Becht7qNKCAd8L1wmngEZAIFxfh2GnohdPQLzgNvdVpQAH/hBNOA4+ARLi4CMdOQy+chn7BaeitTgMK+CeccBp4BCTCxUU4dhp64TT0C05Db3UaUMA/4YTTwCMgES4uwrHT0AunoV9wGnqr04AC/gknnAYeAYlwcRGOnYZeOA39gtPQW50GFPBPOOE08AhIhIuLcOw09MJp6Becht7qNKCAf8IJp4FHQCJcXIRjp6EXTkO/4DT0VqcBBfwTTjgNPAIS4eIiHDsNvXAa+gWnobc6DSjgn3DCaeARkAgXF+HYaeiF05BnC1YDLhgpRyX8c06YDTwIEueC5Nwft58mhPvV/3y8vv31p//mnwDyuzwnJB8/Hi7dXXlGV/5hxemn/GNk6afHz776evUT/r96QoUf4z53tOCS2Tqv6edfr6/f/Rkl7xP63/MHrIxbasCeqZTbO5dz4WPkMz4G+vkzMHnHit9fX6LhQPhJvcYAIpDXTV/04k+3Q33otBNRLxZRxxUD6kIm5ZIPo/6An3AP9TOYCS5Vg0O9LnwCXS4CjSsGoIU8ySUfBvoBHf8e0GcQ8V12Bgd0iV3y/QFdLQKNKwaghSzIJR8G+gH9/B7QZxDPXXYGB3Tet/I5DvHLH+yAZgH2HWhq2IU4xyUfhv0BFfse7GeQsF2uBgd7Vjqv7wo7B/nDvVnEHVcMuAuNjEs+jPsDYvI93M+gJLtkDQz3J+jAssjEH7x6/OHeLuKOKwbchVTFJR/G/QFN9x7uZxB0XbKGh3vRtw7uPp/z3SLuuGLAXShGXPJh3B+QVu/hfgZd1SVreLhXjTPefQ73fhF2XDHALkQbLvkw7A8InPdgP4O66XI1PNibojnT8rzYNXoOdrqih70Q+gaXfBD24gGR0YUduf3D7nA1PNjb3hntHtdwxaIWR1cMsAuBg0s+DLtJi0Nu77C7XA0P9r52Xu4+YV8U4+iKAXYhd3DJh2E3iXHI7R92h6uhwZ6v8+Jso31RmqMrBtiF+MElH4bdJM0ht3/YHa6GB3uBbwr6Q3pRm6MrBqSF3sElH0bapM0ht3+kHXqGh3RVe5yvF4tyHF0xIC0UDi75MNImOQ65/SPt0DM8pBusHf0hvSjA0RUD0kLT4JIPI20S4JDbP9IOPcNDusXmUMchvYEheAcVIYzl/QDGn062vJ+bLG/K/aVY3uh1n5b3hjRXLYxmD/u5ycOm3F+Kh72H8XgPewP/To2c2ZR+bjKlKfeXYkrvkTvelN7AglMjZ3aZn5tcZsr9pbjMe+R8ucwb8i20OJpt4+cm25hyfym28R5Hb7bxBh6ZGkizD/zc5ANT7i/FB2YgPfrAG1q4aIE0G7vPTcYu5f5SjN0RSF/G7gY2lhpIs1P73OTUUu4vxakdgfTk1G7gS6lxNFuvz03WK+X+UqzXEUdP1usGRpMWR7uX+tzkpVLuL8VLHXH05KVu4BypcTSbo89N5ijl/lLM0RFHT+boBlaQGkez2/nc5HZS7i/F7Rxw9OZ2bmD0qHE025fPTfYl5f5S7MsRx+Ptyw2cGzV0Zj/yucmPpNxfih85Qne8H7mBFaOGzmwwPjcZjJT7SzEYR+iONxg3cOnU0Jkdw+cmx5ByfymO4Qjd8Y7h3gEW5jCMtakFvByb6zhyuthcU5AmcnvG81k4S4n9l226unMkGo9ozgThLdv5guY6M9/k5XsHMpw5KANZrHMczukPu5lIukXsxMRAF0ZniqLzPgt9Fs68c49dRuatN+xmYuMWsRMzA11gnCkuzvs09Fk4E0/GLl93lWsfegRyJvRtEUgxT9DFvZnC3rxPSp+FMw3dA9l0fnaNmAFyJrJtEUgxS9WFtZmi2rxPUZ+FMyndA1nnzoj0CeTMd0UXgZQHtauANH1P1Lub+Cwc/3APZFn7fC3OfN9zETt5EokKO9N3Pb0biM/CsQz32OWdMwiPjiCeAXLmG5yLQMpNt1RAmr696d1BfBaOZ7gHMiNN+ki3V+8S2hfzz02Lecr9y13M70OgPC3mNwY3ybhuf26zkn7B63bG7JR1+0ZvFlmX6M9NTtEveYm+h+n4JfpGbwxZV+PPTa7QL3k1zjB5W41v9I6QdeH93GQH/ZIX3nvMPC28N3oryLrGfm7ygX7Ja+w9Zp7W2Bt9gK51Of3cFJ37S15O7zE7fjm90YffWlfOz02xt7/klfMeJk8r540+1Na6SH5uirP9JS+S95idskh+EKa5ta9p6asHIJguLdZldXwU3f23ClZZ3tavptcKcvsPCXHiWALBrVxjlXOqDz2zW8Dito105dBuAVQM4SmeYP93E+yU+0uBHWCfAfbFXRvpyvGwmyMV8HVsC+xn+GZQIea9TMKgYD8hcmEG9sVdG+nK8bCbgxwKkwuA3P5hF/NoJmFAsPsLephyoFzcwpGuHM8Bc3xEaYoVRG7/HBDzcmZkUBzwFS8xw4HF/RzpyvEcMIdWlKbdHZHbOwdK4YsxI4PigK9QixkOLG7uSFeO54A5KqM0RZoit38OiC8/MSOD4sAJURozsC9u7khXjofdHNBR2oJUz/BdqVIsUpiEQcHuK8BjhgOL2z7SleM5YI4FKU3BrsjtnwNyxRKK23bHgeNlrznYF/eApCvHw37E90RKU3AscvsHXqxZmIYBAe/vWyMzLFjcH5KunMAC+zl7pSmyFrn9s0CsWpiTQbHgfOfslYu6H105gQX2c/dKk/KH3P5ZINYtzMmgWOD13L1yUfmjKycAbz+HrzRpf8jtH3ixWGEaBgW813P4ykXtj66cALz9XL7SpP4ht3/gxXKFaRgU8Gc8l69alP/oygk0sJ/TV5kEQOT2TwOxYmFSBkWDc57TVy1KgHTlBB7Yz+2rTCIgcnvnQSVWMMzKgHhw3nP7qkUZkK6cwAP7OX6VSQhEbv88EGsYZmVYPDjjOX7Voi5IV07ggf1cP8SlWHhwBmWwEqsYZmVYPDjfuX7VojRIV06ggf2cv8r2TfgziIOVWNMwKcOiwfnO+asWpUK6ckJYkP3cv8okFSK3fxrI8IbQpMKznvtXLWqFdOUEGtjPAaxMWiFy+6eBWOEwKcOiwfnOAawWxUK6cgIN7OcCViaxELn900AscJiUIdHgnOcCVovSIV05gQb2cwIrk3SI3P5pINY3TMqwaOD1nMBqUTukKycgbz83sDJph8jtH3mxomEehoW813MD60W5kK6cgLz9HMHaJBcit3/kxSKGeRgW8l7PEawXBUK6cgLy9nMFa5NAiNzeka/FuoV5GBbyJ+wSOoP8oiRIV05A3om01yFvkgSR2z/yYqnCPAwLebgCHpFfFAHpygnIO8H2OuRNIiBy+0derE6YhyEhjy8E+bQB6kXdj66cgLwTYq9D3qT7Ibd/5MWChHkYFvJFK1f6HmPD6kXZj66c8LUwJ8hexwLb9plnkP1qsThhTobFggrOhD/kF5U+unIC8k5ovQ55k9KH3P6Rl99lCk7pK9ZN5vOdvyju0ZUTkHei63XIm8Q95PaPvFicMA/DQr5tz2X81YviHl05gQZOgL2OBiZxD7n900CsVJiUYdGgL88l9deLSh9dOYEGTri9jgYmpQ+5/dNALFuYlCHRoFzn2bmk/mZR9qMrJ9DAibfX7b5tkv2Q2z8NxBqGSRkWDYrmXE+DZlEDpCsn0MAJuNfRwKQBIrd3GjRiEcOkDIsGlRsk6DFWtFkUBOnKCTRwwu91NDAJgsjtnwZiRcOkDIsGde8EBXkMEWwW1UG6cgINnGB8HQ1M6iBy+6eBWN4wKcOiQeuGCPqkwaJUSFdOoIETjK+jgUkqRG7/NBDLGyZlWDToC2du4JMGi1ohXTlhLyEnFl9HA5NWiNz+aSCWN0zKkGhQrTM3RNAnDRaFQ7pyAg2cUHwdDWwH9ZxBOGzE8oZJGRYNCidE0KNx0CyKiHTlBBY4gfg6FphEROT2zwK5DVJwImK1rugwc2/IL+qGdOUE5J3Yex3yJt0Quf0jLxY0zMOwkK+7c43/RdmQrpzAAif0XscCk2yI3P5ZINYzzMmwWNDWcjLgkQXtompIV05ggRN5rzvqzaQaIrd/FojlDHMyLBb0PoMF20WhkK6cgLwTbK9D3iQUIrd35FuxgmEehoR8vc66c43/RZ2QrpzAAifWXscCk06I3P5ZIBYwzMmwWFD4DBxsF6VBunIC8k6svQ55kzSI3P6RF4sW5mFYyFf5ucb/ojJIV05ggRN3r2OBSRlEbv8sEAsY5mRYLKhbn+N/UQykKydsKu3E3euQN4mByO0febFoYR6GhXxbnWv8L2qBdOUEFjgx+DoWmLRA5PbPArFoYU6GxYLeZxBhu6j/0ZUTkHdi8HXI2075PoP+14pFC/MwJOSbdeYEEfoc/4taIF05gQVOPL6OBSYtELn9s0BuhB6cFtisC2x46A/5Rf2PrpyAvBODr0PepP8ht3/kxaKFeRgW8lWWn+dokW5R/6MrJ7DAicdXsaAz6X/I7Z8FYtHCnAyLBTUMCn/IL+p/dOUE5J14fB3yJv0Pub0j34lFC/MwLORbJ1DQ4/u/W9T/6MoJLHDC8XUsMOl/yO2fBWLRwpwMiwWds5egR0e4W9QC6coJLHCi8XUsMGmByO2fBWIBw5wMiQXtOmvONRdY1ALpygkscILxdSwwaYHI7Z8FYgHDnAyLBQUd6OoN+UUtkK6ccLiYE3+vQ96kBSK3f+TFAoZ5GBbypRMY6HMusKgF0pUTWOCE3+tYYNICkds/C8QChjkZFgtqfMnRH/KLWiBdOQF5J+Jeh7xJC0Ru/8iLBQzzMCzkW2e3QJ/jf1ELpCsnsMAJuNexwKQFIrd/FogFDHMyLBZ0Tlygz/DwblEYpCsn0MAJuNfRwCQMIrd/GshDEoMTBrt15nPnwH5RDKQrJyDvxNirkO9NYiBy+0derFqYh2EhX/gMBuwXxUC6cgLyTly9DnmTGIjc3pHvxaqFeRgW8uW5ggH7RTGQrpzAAifGXscCkxiI3P5ZIFYtzMmwWFD7DAbsFwVAunIC8k5cvQ55kwCI3P6RF6sW5mFYyLc+dxHsF0U/unIC8k4svQ55k+iH3P6RFysV5mFYyHc+AwD7RdGPrpxwmrwTS69D3iT6Ibd/5MXihHkYEvL9OvO5c2C/KPTRlROQd+LndcibhD7k9o+8WJwwD8NCvvAZ9NcvCn105QTknfh5HfImoQ+5/SMvFifMw7CQL52gP5/jf1HooysnsMCJn9exwCT0Ibd/FojFCXMyLBbUpbM5kEcWLOp8dOUEFjix9DoWmHQ+5PbPArFQYU6GxYLW5/jPs0Whb3fpBOydCHoV9viNFvApu3/0xWKFuRgW+t3RgX8bOojeAQ+70C/t5iQ2c9JA9xz31iNHub0D555PEQxw2MgPwBXrLD92Z8dNgSe9Eje54YION8vjlnL7x805XSIw3PJ1V7mHuR8LYkl114Eo46VVIOLeBhCR2z+IzkERwYHYdM5R7McetbopobArQZRuhw5Ei9lBuf2fp++c8xAciHXujMTjQcT0SQmi/BKQDkSLV0G5/YPoHNkQHIglTmQ5FjeUVOImnXodbhangXL7x805cCE43PLOGXxHz0FL3FAJopyI60C0mAaU2z+IznEJwYGYFccPPkQVKXHLxWuEfmiQs4j+lNs/cs4JB4Ehl627upMhXsca/Zuy0cMoXiS5SsF/jrtbYDyDgu+eUBAcjE3vaR6K568WRvFeyVVy/HPc3QLjGeR494SB4GCsSUk5Ejm9BpOLl0muU2FwdwtyZ1Bh3EMBgkOuxC7fxyKnV2Fy8TLJdToM7m5B7gw6jLuPf3DI5b2rwxwb5byp9EJMLt4mjN+DOOLuBhyR2z+Ozkb8weGYlc4rsMIWS8cCqRdjcvE+yXVyDO5uAfIMcoy7lX5gQD5BB7on1hwdibaheBYtkOL1kuskGdzdAuQZJBl3M/zwgCyc75Jn+fGPVr1Ck4u3Ta7TaHB3C5Bn0Gjc/ezDA7JyT405fkDqRZpcvG1ynUyDu1twPINM4+5OHx6OTeHEeRy92Kj0ok0hXjaFTrTB3S04nkG0cfeXDw/H1j235eilR6VXbQrxril0qg3ubsHxDKqNu0N8eDj2zsErJ+Col20K8aopdLIN7m7B8Qyyjbvfe2g4wsRwvi59Ao56EacQr5pCJ+Lg7hYczyDiuDu2h4djgW9hHwudXsUpxNul0Kk4uLsFujOoOO6W6+FBVx39JeVNrRduCvFCKXTCDe5ugA65/UPn7JMeHnTN0d8y3tR6qaYQ75BCJ9Xg7hboziDVuBudhwddi83LjoVOL864EZg66EziDHL7h87ZnTw86KCQHg2dXo5xgzB10JnkGOT2D52zvXho0KGzj5dEa70C44Ze6qAzKTDI7R86Z0/w8KArWh9H7W1qvQDjBl/qYDQJMMjtH0Zng+/wYKyO/qrsptZrLm7IpQ46k+aC3P6hc3blDg+65ujvum5oOzwtdE7UpQ46k8yC3P6hc7bVDg+61vmy6vE2RG34vpITeKnD0SSzILd/HJ2NscPDsS/9yJ61XnNxwzB1OJo0F+T2j6OztXVoOJbrPPMjezZ6AcaNw1ThiLsbcERu/zg6m1OHh2PR+BmPjV6NcQMxdTia1Bjk9n92r7PVdHg4Vm7gzNEBUI1emnHDMnU4mqQZ5PaPo7NZdHg41r1j0x8dNkMxqVocnSBNHY4mnQa5/ePobP0cHo6tGzZzPI560cYN0tThaBJtkNs/js7mzeHh2Bde9kHeNHrVxo3R1OFoUm2Q2z+Ozu7LoeFYrTM3bOZ4HPUSjhuiqcPRJOEgt38cnb2Uw8OxcMJmjhZRacMTLYxOgKYORpOcg9z+YXQ2Rg4Pxqo4WsFp9AqOG5Opg86k4CC3f+ic3YzDg652TgY4fgQaNqBxQjJ1MJoEHOT2D6OzNXF4MLa1j12+N61ev3EjMlUw4u4GGJHbP4zOPsPhwdgfH0DT6iUbNwhTB51JskFu/8etOhsFhwZdvc687LO/afWKjRuDqYPRpNggt38YnV1/w4OxOD6YptWLNG4Mpg46k0iD3P6hc7btDQ+6KvczAvUajRuPqYPRpNEgt38YnX13w4OxPnrb+k2rl2XceEwddCZZBrn9Q+dslhsedG3lZwTqVRk3NlMHo0mVQW7/MDr73oYHY398YA2NXS10TmymDjqTEoPc/qETU2cmUkjQNevMCaw5fgTqVRk3TlMHo0mVQW7/MMptG4NTZZp1Qds3HQmdXolxYzN10JmUGOT2D52YOjORwoKuynwcuL7pDJsBO3GaKhhxdwOMyO0fRjF1ZlKFBWN9/CbqnV6JceM0ddCZlBjk9n/WpZg6M5HCgq51gmeOfgfSF6K0MDphmjoYTUoMcvuHUUydmVRhwdg5e84cbTB1elXGjdLUwWhSZZDbP4xiGs2kCgnGdp01ft6HelXGDdLUwWhSZZDbP4xiGs2kCgvGAgdmHAudXpVx4zJ10JlUGeT2D52YRjORwoKudIJljn8f6lUZNyxTB6NJlUFu/zCKaTSTKiwYa/rS0pHQ6VUZNxJTB51JlUFu/9CJaTQTKSzoWmdXmeNHoF6VcQMxdTCaVBnk9g+jmEYzqcKCsXNiZY6POuz0Eo0biKnD0STRILd/HOXhGsFJNN06O36HGZzwr4bOib1UQYe7G6BDbv/QibkzEyks6IrjA2RwLL8aOifeUgedSZZBbv/HEoq5MxMpLOhKPwEyOGNfDaMTe6mD0STLILd/GMXcmUkVFoz18QEyOCRfDZ0Tb6mDziTFILd/6MTcmYkUFnTt8bvN4JR7NXROjKUOOpP8gtz+oRPzZSZSWNB1xwfF0LcOtYfZOTGWOuhM8gty+4dOTJGZSCFB16+z43eYwTnzauicuEoddCbJBbn9QyemyEyksKArjg+EofPvtNA5cZU66EySC3L7h05MkZlIYUFXOoEwx49AveTixlXqYDRJLsjtH0YxRWZShQVjXTpfoD8aRr3i4sZY6mA0KS7I7R9GMV1mUoUFY3v8CKQj/NXYOYGVKuzo9gbwKLt/9OQ5psGJLv26W4qFQadd3aD1u/tS+s32+s32xYeLf/7/UEsBAhQAFAAAAAgAeHlRW6D7NLgpBQAArCYAABcAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2RlZmF1bHRzMmQueG1sUEsBAhQAFAAAAAgAeHlRW80Hp1d3AwAAYBEAABcAAAAAAAAAAAAAAAAAXgUAAGdlb2dlYnJhX2RlZmF1bHRzM2QueG1sUEsBAhQAFAAAAAgAeHlRW0XM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAACgkAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAAACAB4eVFbeox2lHBGAADEpgQADAAAAAAAAAAAAAAAAABYCQAAZ2VvZ2VicmEueG1sUEsFBgAAAAAEAAQACAEAAPJPAAAAAA==", +}; +// is3D=is 3D applet using 3D view, AV=Algebra View, SV=Spreadsheet View, CV=CAS View, EV2=Graphics View 2, CP=Construction Protocol, PC=Probability Calculator DA=Data Analysis, FI=Function Inspector, macro=Macros +var views = {'is3D': 1,'AV': 0,'SV': 0,'CV': 0,'EV2': 0,'CP': 0,'PC': 0,'DA': 0,'FI': 0,'macro': 0}; +var applet = new GGBApplet(parameters, '5.0', views); +window.onload = function() {applet.inject('ggbApplet')}; +applet.setPreviewImage('','https://www.geogebra.org/images/GeoGebra_loading.png','https://www.geogebra.org/images/applet_play.png'); +</script> +</body> +</html> diff --git a/tutorials/module_3/geogebra-offline.html b/tutorials/module_3/geogebra-offline.html new file mode 100644 index 0000000..544b771 --- /dev/null +++ b/tutorials/module_3/geogebra-offline.html @@ -0,0 +1,56 @@ +<!DOCTYPE html> +<html> +<head> +<meta name=viewport content="width=device-width,initial-scale=1"> +<meta charset="utf-8"/> +<script src="./deployggb.js"></script> + +</head> +<body style="margin:0;padding:0;background:#fff;"> +<div id="ggbApplet"></div> + +<script> +var parameters = { +"id": "ggbApplet", +"width":858, +"height":590, +"showMenuBar":true, +"showAlgebraInput":true, +"showToolBar":true, +"customToolBar":"0 39 59 || 1 501 67 , 5 19 , 72 | 2 15 45 , 18 65 , 7 37 | 4 3 8 9 , 13 44 , 58 , 47 || 16 51 64 , 70 | 10 34 53 11 , 24 20 22 , 21 23 | 55 56 57 , 12 || 36 46 , 38 49 50 , 71 | 30 29 54 32 31 33 | 17 26 62 , 14 66 68 | 25 52 60 61 || 40 41 42 , 27 28 35 , 6", +"showToolBarHelp":true, +"showResetIcon":false, +"enableLabelDrags":false, +"enableShiftDragZoom":true, +"enableRightClick":false, +"errorDialogsActive":false, +"useBrowserForJS":false, +"allowStyleBar":false, +"preventFocus":false, +"showZoomButtons":true, +"capturingThreshold":3, +// add code here to run when the applet starts +"appletOnLoad":function(api){ /* api.evalCommand('Segment((1,2),(3,4))');*/ }, +"showFullscreenButton":true, +"scale":1, +"disableAutoScale":false, +"allowUpscale":false, +"clickToLoad":false, +"appName":"classic", +"buttonRounding":0.7, +"buttonShadows":false, +"language":"en-GB", +// use this instead of ggbBase64 to load a material from geogebra.org +// "material_id":"RHYH3UQ8", +// use this instead of ggbBase64 to load a .ggb file +// "filename":"myfile.ggb", +"ggbBase64":"UEsDBBQAAAAIANN4UVug+zS4KQUAAKwmAAAXAAAAZ2VvZ2VicmFfZGVmYXVsdHMyZC54bWztWt1y4jYUvu4+hUZX7UXANjjATrw72Z3pNDPZ7E6T6fRWGGHUCMm15AB5+h5JxjYh5MfABrrLBfKR9Xe+7+joSPLZx/mUozuaKSZFhP2WhxEVsRwxkUQ41+OTPv744d1ZQmVChxlBY5lNiY5waEqW9cJW0Bp4HZNH0jTCMSdKsRijlBNtqkR4hhGaK/ZeyCsypSolMb2OJ3RKLmVMtG1lonX6vt2ezWatZX8tmSVtaFK152rUThLdghQjGLRQES4e3kO7K7VnHVsv8Dy//feXS9fPCRNKExFTjEChER2TnGsFj5TTKRUa6UVKI5xKJjRGnAwpj/A3I6Ffxxmlv2FUVAKcPPzh3S9naiJnSA7/oTHk6SyHpot6VmibMvD6s+QyQ1mEez2MAFaTDCMchCHAxdMJibDnCnOyoBm6I9BCkUNyLWNb3+aOCVdFw7anL3JE3ZtuUV4w4AfgREpTYMJr+RiplNIRjBoXOsIDELOwHNdatKpfs/uixbCeqxe8yC4GFkuZjRSaR/iKXGG0KNJ7l0KRs3YB7MsgHtGUihEUWsHZb4SzD/wYoH1vYJH2/cNGumjxTZE+PR6kd40z6LAHoL+KOrxBM3gDgNPAa9KfLmMF3wvxJ01g1HWUO8eD8lFgvGrD3UboOgcB/4eHrAXLYajMPwQucppyOv++wHMmKhAvrVCCHjSLNOqgm6DsLVwG9PsY6EZbB5+esPhWUAWRHJhFWck8/MFGsELZxiSEikwDnn6v71qg/4oV0hhwxqDM1kSMcxEbrUpwP+fZXZ2NTtd7Cz6qNhvPgD2RsRlLRRMjlbhcL+XKtJsFdz+wactcc9PphdCw8wLAYJhqTa9bStMb6OiruMmIUGb79dCMYCOU1X1YwUkxBlH4xPVXW8ytjCyesoXwGGzhf2gJO/CW4o5kJU91TptFYxvjhRYYyRsT+4qlow7E9oHTMRv3VkZ02swxBF73cfRavQM2ojtQT1Yw/FWIVfhxFMHg9/SSj0TwsLJRxYjYwX6IL5LajP62lEs+eo6P7dXYzGgNrZUta9ixpIbQ3AMD9z3387sDz/dP4eThYO3dILyy+TEQu4wKYxcl7hPjg5g1r4kzm4Vvm3mIpTCH9ctNj5NKBro/vc6rYjPKEiqcKwfH49k2FpBAy/dGMrckc9/KC0jg7b1JINtWB60yNkfnrsa5K3geuKTjkq5LwgK9Z5hNwVpqsfeDRaXb8Iz9iDzQEcXjh2Q8Ip/SrOYYrpZyaTuhcw2gQ756GqY4GwHZUwZwngDOUwIrsInlh0ryXMPVH9yoierqzxncjI30xARvML4xmxtiHXpoIjN2L4UuwULGXs+5vSR8nungqeD0RW5rk1FvNuGasW63ShKR8Go2njuposDdLNhC66eSTzMDA7HEnLaCfsfvhx2v5/cGYf/0hUT5/Yoo92JLnjbNSOBvfUaSLK4OZyE03kAlELdTMovV2vN73bATDILQHwy68ABj3/Ue8vcyo9oPNVuMg77FwiQARQdGuOMjSGsFa0X3drrIZZyr6szcSSVIYJaNouqtUdrjCkbyOeOMZIv1nvaGsqbzKnC4sULtE4gDDAs3qwKwJ9XQLpxU+87AKTNmgKKA71PgDMJ2wsQnEt8mmcxFYd31MHwnqhdr0CHuz4ZScgo76aVan5Zy7V57LQLYBFCxku/XTT0LEnwKFN8O5Xxl2Xrmdk5Vk+DSCrUL50cmwUsU3bQ0nby5NTQ53nvlVemjsUqdgHbt66z28lOwD/8BUEsDBBQAAAAIANN4UVvNB6dXdwMAAGARAAAXAAAAZ2VvZ2VicmFfZGVmYXVsdHMzZC54bWztWM1y0zAQPsNTaHTHP7Gd1p26TAYOMAMMDBeuqr1JBI5kJCWO+2q8A8/E6qetAwWaTihTBh+8kta7K337eS359Ol21ZINKM2lqGgaJZSAqGXDxaKiazN/ckyfnj0+XYBcwLliZC7VipmKFvbJK7simkRlktkx1nUVrVumNa8p6VpmrElFe0rIVvMTId+wFeiO1fC+XsKKvZI1M87L0pjuJI77vo8u40VSLWJ0qeOtbuLFwkQoKcFJC13R0DhBvzvWfebsJkmSxh9ev/JxnnChDRM1UIILamDO1q3R2IQWViAMMUMHOHUpeJ1hjJadQ1vRl8LgKqG2UyT1Wm3QPhhXNEuLhJ49fnRaS6kaTeS2ooiBHLy48KJHYBEsr9t43cbrej/Y+8HeDcbWoV7Knsjzjxi4okatMWqYkOu4Z1D9TLZSEVXRCUbAjKUJynOU5QRT0XZLhh6jNPFXmpdJmk7Tibdv2QCKbBg6DVHZ2sjauXSjc9bqEMsFfy0b8Jo8PC84ssEiow1g3jG47gAa1/J44rKQBIPj09gfF/DeDC0Qs+T1JwEa81mMjGzjBW8asLT0NvBZeBNt7xXtmEIqGYVE83q+ALFBxKTSZJu4SQwo0NuF7Vl6blPXH1Cg9sIKHHbmuBLFt2TmLWb+wdnEi8yL3IsiIHYaB/L8QCO25Tp7fpW0WeiOmJNkjjn7JhrDI5J4xyzb1y3k+E9lFMnzt3JKQhtw1V+//Bpu92LWTBnQnInR6/vMKr5HfvoQkP+TuP8cSPQvYITfW9ffwQ/L6p3wK0sH4CRFiRA6eVWiikPBOGf22xVc/LTy3YRYAOq2TF1rUF4Tir8v5b6Sh+r+2zLRyXZYQqOkuEZ8NHQNehZAv8s7tm+i0iJzmSr8t2TE9SgPeBblNMmn+cGydlfy74XsTNVLvoIG2C60yIr7gnaS+u90fuSgteLfwPbtgLWaY90Y43qPlA3F5fiH8vzAYVVcr3ZBTe+RrFNfsT1ZS+w9QFQFmKt1vrHtcVEt/hfVfbD8vGaN25qFpb677I8x9QQ9ZGWc5qW9jqZpcZzmeNQ5EECH2LDyVdfymptbHUFuPIDYQX/KGLy4QBGi7XsmIbOpF0deHHtR/nYjotdqjkfym7bQQbWb5PxuSUa7GzfR0dFtWX/t+F620WOjX26j49Efhfjy98XZN1BLAwQUAAAACADTeFFbRczeXRoAAAAYAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSoruUCAFBLAwQUAAAACADTeFFbecmeHMVFAACwnwQADAAAAGdlb2dlYnJhLnhtbO19f3PcuJXt37ufost/pDy7o3bzN7mxd0vTu6uXqmST2uS9SurVeynZbtt6I0uOJc94Uvnw71xeNvtCJFv3dqMdcIytncgQAQq454AEzgGB5//2+f314ofNx7ur25sXT5Ll6slic/Pq9vXVzdsXTz7dvzmrn/zbv/7j87eb27eblx8vF29uP76/vH/xpKCcfblimS6bVUa/u/zw4cWTV9eXd3dXr54sPlxf3lORF09+fLK4ev3iSb7apFnSlGcvk9XlWf4mTc4uL19vzt4Ub6o3Rf3yTf0SN1l8vrv6l5vb/7p8v7n7cPlq8/tX7zbvL399++ryvv177+7vP/zLs2c//vjjcluz5e3Ht8/wx++efb57/ezt25dL/HyyQPNu7l486f7xL7ivU/rHrC2XrlbJsz/+5tf8d86ubu7uL29ebZ4sqOmfrv71H//h+Y9XN69vf1z8ePX6/t2LJ3VRP1m821y9fUexaFDlZ5TpAwLyYfPq/uqHzR2KimTb+Pv3H5602S5v6Po/8L8W1327nixeX/1w9XrzEVA8Wdx+vNrc3HeXkG7/xLNt4ec/XG1+5LvQv9o/gEw/XN1dvbze4I99/IQGXN28+Ygovnjy5vL6Dum7+5+uNy8v8Qe6X+z+eIarV39F1rZx3F7ccrX6lv4r8V++6hoq/mT+ZHF/e3vd3nK1+NvfFukqXS2+pR8J/0jxoyz50op/t8r4B13Cj5x/FJwn5+I5Z805T855clSyb2HXAkMTER9uYpk3uyamTfFt2kw3MT3qb/ZhTZMCsbp8+eLJ+a8v/uO7/z7f1SCrv02z9Nu0GK8A4OhjDCySxd8W+JHyj2xBYcM/ED76kXdJRJx+VO2PpIUGyZp/21Cy9BPLpECNty1BC9r/b/8bNCT58n8yM6HHnea4v1g6XeLLxzgFXXz8zbxW/8181VRewlwUYIjub1b41ciTh3+ii7Q//YDf0J/X1apI8CdltRbJokCPLRZJQ89B6o7pIikWOX5T4zfVIqPfFUm+yBaUJckW7cMub3tuiSt0Gf9bFKtFQg9FNGyBpyoamdJztCgWBbJVVJaeCSU6N0qt8B/lRo3wX0a/yzL81/4uy/EfPVkL3Kjg26AeRVa2/yra/6VnRYG/UlBYF+0l/C5v8OfoF0WVLDLUBOlqtcB9cXvUuG0NnuH0/8mCH9/VIq0X7V3b+6+Oe6KqGfr82fYd+byDZHH3jvJ278b7zXuMDVB3NKF9IjJWAAmVZMAqiugWMAS4XpT0s0ONMKsd1ArClKDbYlfSbxEfeuwu2rAziGm+xRH/bpEklB0k25jnIuz0YkTQ8XsOO/58KgOflouS7gcu4YVbEn4pbpkugFfZdokJUDBQu7276qP7bnONQVwX9zaQVzcfPt07wXv1ngY07T/vbx/kfn376vvv+mB3VzaXdxgr7bJhJLMbHvHIxhk9/cPz68uXm2sMRH9PVFgsfri8prdp+xfe3N7cL7bPxpR+9/xZO1B7vvn06vrq9dXlzf8C9Nth0n99ev9y8xGcwz9vqYntTaj4YnRElzc5Z3l1e/vx9e9/ugNTFp9/c4XwPH2KUP1xcbYollX2zeKfFn+9vX3/x28wwPzN5ef+8j8PLv+0K/0nlE6Xxfbqn9qrfeE/oXDmXG1rsvnh95v7e0TjbnH5eQPacuzffqSnThdVSvzq7rvb692vPtxe3dyvLz/cf/rYDumB7kdq4/nN2+tNG9j2dxj3vvr+5e3n3/NIBYSge/3hpw9IrbgCL9+ub69vPy7QI9MCIxncrP2J8Qz9bPNQzfpc6ITIg/9Fju4edNP+etLgMUBVop/IQz/bXMCcq9a1FPXjZibdbS4/X921T1vcXHKyJQyNoj/dXN3/epu4v3r1/a6llJ/psI2he8suy9G3fP7sAROff7/5eLO5pj/26W5zl/07E3pXhVfg9NXNp9tPd3yFEWwvocDvLu/fnd+8/u/NW/TS313Ss/Ief/DhTV5vXl29R0H+fR8wQvt/ogX869ebtx8324Zft9Mnjnd7lYL64ePm8vXdu80GnaG7B3cFma1t5bZVzzGyvd6078H3xHTc5T1xmu52v8EDgvPfvfp49YFovHiJB/r3mx1TX1/d0R36X1BuhOQObcMj4fYGQb+ngGOK+en+3S0IhDKX9/Qb6vbXm/eYLC3uW8refHq/+Ujzzw4+6lbtzAs1/yTrj4cAMMKjoa3zGeLFtaZ/XL68u73+dI/JJ4J1s5t8MjG6xwbG0uj6GI1UmFD8hHSFgdCbq8/UDs6Iql79FdDuIG0Jc85xd2DeEf/+HRiGeR4IReOJrh+2//gfV69fb9rnNNcf91rcvvx/eG4+4OyOFLg80SsXl9cf3qESq2V3u+vLn+hBKQLU3u23b97cbe6poWc0BaOGiqu/uX3tBvXyBiRsQeuwX6IVeLZTVNBh+vZAHvipfSztIH/WIfkopu3D8SGoybYdElZqHMOaqmFtACcK1BlKoLVpilv8rGEtUCE7rPT08w/rHwewegW1oJ/UVrzmJjHl38waUm4lXuZ/Z0hpRHTap28r56Ct+b5e+tUi6v/Z+12STHVRGZLtzI0LiWAfH5Rds7t8D5utpTGqjLa2I4zz6+vbHzevB6Ovy0+fr66vLj/+5A62nHB9xogJkjf+/DZEmPF8Rj2eiglDuZsQfLvoB/vpMulnCn/6BpMBrm07cueZkgtGd6H/O4eFHVoqj75pMu6GXhn47rdtdWjewL/tZgL8291oUc6n7viFs8Tjl9i8zGhI8dcOyf1RhWbKUf389LtvELun4ImI6U/4rTWA5wcGUPK2nQh5CV83v30YPjkG34YPf/KR8O3tw+fDPrx9KMc+3LW2Y9ubp5+/WbxYXMIUeo1/buvy5tNN+zfbG7nB7i/tbrX/hbEVSX7ou4oivjamnTC69pfn81eXd7+5/NAqGzf3gOX7Dcj872DoD6jjD5v/TcFGrL/9/G3yf6AWtixZPFs8/fx/n6bU85NWF3n+bHsfieSr2/fvAdXiphUUf9d2952Kdbl68eTzOeb7XZw/3fe//XM3qe1u8MiTg7IfMgxIUpZP2p+mp8duKNBNS0zD9RHA8Y8xwA98KCXLtKzrOkmS7n95vIK6jj2eXJR20D+A6s0Apje/uMSr85f7oRr2wK6U1yecrQce0E0Mj/P4NH9k7IBIt4/z84SeH2Mjg0FQ04lhrpoaJ2oK3vjclFTdlOxhUzq19e/dFAxDuSmZuin5w6Z0D6i/d1PwGOem5OqmFA+bYn37n6gpGJtzUwp1U8qHTemmAn/vpkCQ5aaU6qZUD5vSzbj/3k2BRcVNqdRNqR82pQqjKRgacFNqdVOah02pw2gKyVXclkbdFpR50JgmkMbs3pL61yQKhfmeTPoXJQx1dWtCfVUm/bsSyw3UrQn1bUnL4brW6N+XKBTmC5PMhK41+lcmCoX5zkz6lyZWsahbE+prM+nfm1gko25NqG/OpH91YjWSujWhvjzJvetao397olAIb89HKhln5I+C3w82sARODX6og410NyvXDzZQKMzBRtoPNrA2Ud2aUAcbJLV2rdEPNlAoyMHGGtVvG/P5KTRo+BGPtwVFBktlBmKt9blzotZtHwrrBK7pm6fr5BsI/518SylVewcPiTN83FTXTZamZZoWGEcG0trtQ2OdcmvhbojWprrWDh4iq2WVrqqySbImq9K6xJKXQNq7faysM24vvG/R3kzX3sFj5gzLHNI6XdVZU9bFqgoG3u1zZ51zc3OnubmuuYPn0GqJL3vqHDyuSix3z/EJk350euIWbydC64JbjKXMosWFrsWDidFZtsQHVGVR53laFWlRVpuzYJq8nS2tS24yFnqIJpe6Jg9mTykoneVlktdlAaizOt+cYeQbSJu3c6p1xW2unDZXujYP5ljBNG87yVrX3LzaaV6ta95g0hVM83rNct1w+xqnfY1yUDGYh4XTwO0YCZXshhErdxyhHThNTeMCaONupLQdKj0YKykHS0P9Npw29uMjKLjcRneEhKSujcMxUjBt7MdE0HW5je6oCEldGwfjonDa2A+EoPZyG92hEJK6Ng4HQ8G0sR/6QAPmNrqDHyR1bRwMf8JpYz/WgTLMbXRHO0jq2jgY74TTxn5sA72Y2+iObpDUtTHc8U2vIqOSXRvdIQ6SujaGO8jptWVUsmujO8xBUicmhDvOoQ+TOv2gG+ek7jgHSV0bwx3n9DIxKtm10R3nIKlrY7jjnF48RiW7Nj5QgpTjnKGgHE4b+3EOJGVuozvOQVLXxnDHOb3QjEp2bXTHOUjq2hjsOOecvg/vxHS9141CQXrd6741CHmHmDtqQ1KHWLCjtvO09/OxR4QasUD9/HXfGoS8Q8wdgyKpQyzYMeg57eLTIaZfs4BCQa5ZWPetQcg7xNwRNZI6xIIdUZ+n/boM7KuiRizQdRnrvjUIeYeYOz9AUodYsPODc/q4v0NMv/YEhUJYezJiJPazHbSGEXNnO0jqzMRwZztZP9vBFkhsH7qzHSR1bQxltvMI2eIaokc7cb+GCDthqTtxoGuI1n1rwNCO4O5UF0kdwYOd6p5n/TopbF+mRizQdVLrvjUIeYeYO3FHUodYsBP382z3kZZ+LRgKBbkWbN23BiHvEHuwCEUpQwxbGA5i/Xo37DmoRizU9W59axDyDjFXVEFSh1i4okrWiyrYk1GNWKiiSt8ahLxDzBVVkNQhFq6okvWiCvbpVCMWqqjStwYh7xBzRRUkdYiFK6pkvaiC7VvViIUqqvStQcg7xFxRBUkdYuGKKlkvqmAPXDVioYoqfWsQ8g4xV1RBUodYuKJK3osq2FZZ/UV/qKJK3xqEvEPMFVWQ1K1YDldUoV3zujXKnaiSu6IKkro2zkNUmaxmFFX6EPWiCrYLV3fiUEWVvjVgaEdwV1RBUkfwcEUV2gSuQ0wvqqBQmKJK3xqEvEPMFVWQ1CEWrqiS96JKbtj6JlRRpW8NQt4h5ooqSOoQC1dUyXcb/OhFFRQKU1TpW4OQd4g9+DhJKaoMWxgOYr2oguM71IiFKqr0rUHIO8RcUQVJHWLhiip5L6rg5BM1YqGKKn1rEPIOMVdUQVKHWLiiSt6LKjj3Ro1YqKJK3xqEvEPMFVWQ1CEWrqhCu6V3iOlFFRQKU1TpW4OQd4i5ogqSOsTCFVXo+LcOMb2ogkJhiip9axDyDjFXVEFS9110IKKKu5Xt7zdv6fcP9rHF1wbfLkhIuUy6RLu1QXe8k9je9t+7nV+ndra9626/jQLya/aWbv8MDtR53Z7z1Z6D8Nsu969wklArP9wtfvH2/peLp9/Rpur0veQ/L7Cv7P6tz2kf+cO2wz008ocd1rD5yw0XaU+We/Hk6v2H66tXV/d9/K9JXPnVDZ2qxNUansP0/WbzgQ7F+u3NHz5e3tzRybYPq4aTYz/KTZJfb95cfrru/srmRp6g5FwSW7uv6CzdrCjxdX+DLRwyOlJot43yMsnpCrZ2qPARPLY60HS4XuHDGXL8Ub6r8CGp63CBKHzqDtf1sa7TpW0PfNjh/qM7QE7b4ZD/C3e47YFrR+4/HTvcaIeb6G9nOFqhqOoky7A9TpaW9MUcOiBy1xnlKqsVduCosb7VJj9P9qGvVX7eG65dVxmIy9uwyVOhuhOEaIShPEEIPYu2rsewH5jXeJn97A4QMuC9olNF9hwN8Nh7phfacfIpv2dcoR1J3XsmXKG9byM6sn4oHqo1UvRCO46JZcRcoR1JHWLhCu19GwGDHrFQrZGiF9pxlDAj5grtSOoQC1do79sIGPSIhWqN0OCtQ6wT2gtXaEdSh1i4QnvfRsCgRyxUa4ROoe8Q225i9mAXM6XQjhsFi9juiAe9NTJsTyDWCLa/2yLWCe2FK7QjqUMsXKG9byNg0CMWqjVC5613iHVCe+EK7UjqEAtXaO/bCBj0iIVqjRS90F50QnvhCu1I6hALWGjvrRG0UY1YqNZI2QvtRSe0F67QjqRuO85AhPYRxPo2Agb9WUVhWCOPVDIKRY8SvBe2y07YLl1hG0kdwQMRtsfa2IsqZSeqlK6ogqSujeGKKn0bQXp9Jw5VVCl7UaXsRJXSFVWQ1CEWrqjStxEw6BELVVQpe1Gl7ESV0hVVkNQhFq6o0rcRMOgRC1VUKXtRpexEldIVVZDUIRauqNK3ETDoEQtVVCl7UaXsRJXSFVWQ1CEWrqjStxEw6BELVVQpd/vabze2f7CzvVJUwY2CRWx3PKheVBm2JxBRpexFlbITVUpXVEFSh1i4okrfRsCgRyxUUaXsRZWyE1VKV1RBUodYuKJK30bAoEcsVFGl6kWVshNVSldUQVJ34Ee4okrfRsCgPzV5DqJKFUWVRwneiypVJ6pUrqiCpI7g4YoqVS+qVJ2oUrmiCpK6NoYrqvRtBOn1nThUUaXqRZWqE1UqV1RBUodYuKJK30bAoEcsVFGl6kWVqhNVKldUQVKHWLiiSt9GwKBHLFRRBcfmbRHrRJXKFVWQ1CEWrqjStxEw6BELVVSpelGl6kSVyhVVkNQhFq6o0rcRMOgRC1VUodXlHWKdqFK5ogqSOsTCFVX6NgIGPWKhiirV7qjD7VmHDw47VIoquFGwiPWiCtqoRixUUaXqRZWqE1UqV1RBUodYuKJK30bAoEcsVFGl7kWVqhNVKldUQVJ3omi4okrfRsCgRmzYngBFlTqKKo8SvBdV6k5UqV1RBUkdwcMVVepeVKk7UaV2RRUkdW0MV1Tp2wjS6ztxqKJK3YsqdSeq1K6ogqQOsXBFlb6NgEGPWKiiCn2h2CHWiSq1K6ogqUMsXFGlbyNg0CMWqqhS96JK3YkqtSuqIKlDLFxRpW8jYNAjFqqoUveiSt2JKrUrqiCpQyxcUaVvI2DQIxaqqFL3okrdiSq1K6ogqUMsXFGlbyNg0CMWqqhS96JK3YkqtSuqIKlDLFxRpW8jYNAjFqqoUveiSt2JKrUrqiCpQyxcUaVvI2DQIxaqqNL0okrdiSq1K6ogqUIMNwoVsb6NgEGN2LA9AYoqTRRVHiV4L6o0najSuKIKkjqChyuqNL2o0nSiSuOKKkjq2hiuqNK3EaTXd+JQRZWmF1WaTlRpXFEFSR1i4YoqfRsBgx6xUEWVphdVmk5UaVxRBUkdYuGKKn0bAYMesVBFlaYXVZpOVGlcUQVJHWLhiip9GwGDHrFQRZWmF1WaTlRpXFEFSR1i4YoqfRsBgx6xUEWVphdVmk5UaVxRBUkdYuGKKn0bAYMesVBFlaYXVZpOVGlcUQVJHWLhiip9GwGDHrFQRZWmF1WaTlRpXFEFSR1i4YoqfRsBgx6xUEWVZNWrKk2nqjSuqoKkCjK6U6iY7VoJJNSgjbTo7yGs6HaH5s2gdztDA8h0bDt24+7QyO99d+h0tzv0IzOmuB27/92h67Rq8qLIkyZbVQ2tH+93Y6eto5OiKsskaZqiyrHqeC8X/7D5/JCIv/jLp9v7X37+8+oF/4sZeT7g4X8+cizAPd16yzFkVpNQ3TW9EakF5Xe3V6g77Xdf0KbDCCn226Zz32iTe5tU+l0yJQV9rVLpI+Ea6DAxXPvCNRBBYrj2hWugQMRw7QvXYPofw7UvXIO5dwzXvnANJr4xXPvCNZh1xnDtCVc6mO7FcO0L18Bl7mZzMVyj4RqM6mO49oVryl2N4RoN12BUH8O1L1yDUX0M175wDUb1MVz7wjUY1cdw7QvXYFQfw7UvXINRfQzXnnBlg1F9DNe+cA1G9d0aqRiusXDlg3B1C5RiuMbCNTwttFsdFMM1Fq7hOQ7d0pwYrrFwDXdo7NbFxHCNhWu490K3KCWGayxcw68qutUgMVyjA4mB3hUHEvvCNdC7Yrj2hWtqKX8M12i4BnpXDNe+cA30rhiufeEa6F0xXPvCNdC7Yrj2hWugd8Vw7VMkBnpXDNe+cA2GqVHA2ReuwTA1hmtfuAbD1BiufeGa+twzhms0XINhagzXvnANhqkxXPvCNRimxnDtC9dgmBrDtc8JGgxTY7j2hWswTI3G2b5wDYapMVz7wjUYpsZw7QvXYJgaw7UvXFNbgsRwjYZrMEyN4doXrsEwNYZrX7gGw9QYrn0rcAbD1BiufeEaDFPjgqV94RoMU2O49oVrMEyN4doXrsEwNYZrX7gGw9QYrn3hmto2LoZrNFyDYWoM175wDYapMVz7Vj4PhqkxXPvCNRimxoXi+8I1GKbGcO0L12CYGsO1L1yDYWoM175wDYapMVz7wjUYpsZw7QvX1NbCMVyj4RoMU2O49n1xNhimxnDtC9dgmBo/0NsXrsEwNYZrX7gGw9QYrn3hGgxTY7j2hWswTI3h2heuwTA1hmtfuAbD1BiufeGaOn4ihmv0S//BMDWGa1+4BsPUuDHCvnANhqkxXPvCNRimxnDtC9dgmBrDtS9cg2FqDNe+cA2GqTFc+8I1GKbGcO0L12CYGsO1b3v/yfPJYrzG4xWPoN9/mNebq8316wcner0ZnN3VXvvu9nPbiP1HePENt8HcFdx/nNfuwLNjT/P67Zs3d5v2XC7sJ0+ncuFsrT1nfU2eCffq8kMLE0f56edvXvDv39yiuXeg2ZueOHdXf938pj3+y/0/nApGl1AFHKvbHRO3rerm5u39u44ZXVT1rI6ktmyeHKNl2XonRsvyBXiMluVDpBgty3rYGC3LsowYLYs7EKNlmaTGaNlPp87k6dRI4HTqbOx06narOsPp1DxA8Xo6dbY7nbrbOC+eTo1cX+R06rPVskzzIm3yJE9XdV6tKud46rxYJXlSpHXW4HK6ar/FtbMxl2xEAmzMx9jY7khjYCMPAL2yMd+xsdsfJ7Lxy52VnqZ5htPQcZB3XoF1DhdXRZKu0jQrcKD6Km8yfG15EBkLSUYkQMZijIzd7dVk5PG1VzIWOzJ2X8FHMn7BR+NqVdU5CFfWVbKq8KCEkCQJif8rk2KV1WmaVE1WJEMtSUfJUlISCVCyHKNk+42ZgZI8ifFKyXJHye6Lt0jJL0XJbJkmRVnUeZ7i6ZgXZbY5k+/rZLnK8lVeNClinxfFqt6c4bD+gyhZSUoiAUpWY5Rs15MbKMkzRa+UrHaU7Fa3R0p+sadkind2lpdJXpdFnhZZnW/OcK7zjpT5ssmzql41dZpkVVMUmzPsmH0QJ2vJSSTAyXqMk+3iMQMneT7ulZP1jpPdUrbIyS82jJRv6cOY1kimIQGmNWNMa+1fA9NYy/DKtGbHtM6MjkybEdOSlaQapcA14DlCNtjpNrZ1/rtXuiWrHd+4QpFw8yJc4hAOKSJcMkq4RxYcDAn32EKDQwiXCMJ1eEXCzYlwqUM4pIhw6Sjh2sUiFsLx8gK/hEsF4brVK5FwcyKcY35Qigg3an9sZ8d6wp3AAEmEA8IVioSbF+Ecf4NSRLhRhyOxWhwo4J9wwuTgCkXCzYtwjodBKSLcqIuRWG0MFPBPOGFkcIUi4eZFOMehoBQRbtSjwGpbI+FO4FIkwqbgCkXCzYtwjv9AKSLcqAORWC0IFPBPOGFCcIUi4eZFOMdcoBQRbtReSKz+Agr4J5xwGLhCkXDzIpzjMVCKCDfqMiRWmwEF/BNOGA1coUi4WREudZwGSoFw6ajTAAPXRjgU8E64VDgNXKFIuHkRznEaKEWEG3UaUqvTgAL+CSecBq5QJNy8COc4DZQiwo06DanVaUAB/4QTTgNXKBJuXoRznAZKEeFGnQZ8Dm0k3AmchlQ4DVyhSLh5Ec5xGihFhBt1GlKr04AC/gknnAauUCTcvAjnOA2UIsKNOg2p1WlAAf+EE04DVygSbl6Ec5wGShHhRp2G1Oo0oIB/wgmngSsUCTcvwjlOA6WIcKNOQ2p1GlDAP+GE08AVioSbF+Ecp4FSRLhRpwFfQBoJdwKnIRVOA1coEm5ehHOcBkoR4UadhtTqNKCAf8IJp4ErFAk3K8JljtNAKdp+YtRpyKxOAwr434FCOA1coUi4eRHOcRooRYQbdRoyq9OAAv4JJ5wGrlAk3LwI5zgNlCLCjToNmdVpQAH/hBNOA1coEm5ehHM3dOp2dBrf0sm8p9MpNnWSuzpFp2GGhHOcBkoR4UadhszqNKCAf8IJp4ErFAk3L8I5TgOliHCjTgO2djYS7gROQyacBq5QJNy8COc4DZQiwo06DZnVaUAB/4QTTgNXKBJuXoRznAZKEeFGnYbM6jSggH/CCaeBKxQJNy/COU4DpYhwo05DZnUaUMA/4YTTwBWKhJsX4RyngVJEuFGnIbM6DSjgn3DCaeAKRcLNinC54zRQirYWHnUatpvO6TcXPoHTkAungSsUCTcvwjlOA6WIcKNOQ251GlDAP+GE08AVioSbF+Ecp4FSRLhRpyG3Og0o4J9wwmngCkXCzYtwjtNAKSLcqNOQW50GFPBPOOE0cIUi4eZFOPd0iO54iPHzIcwHRJzihAh5RER0GmZIOMdpoBQRbtRpyK1OAwr4J5xwGrhCkXDzIpzjNFCKCDfqNOCICSPhTuA05MJp4ApFws2LcI7TQCki3KjTkFudBhTwTzjhNHCFIuHmRTjHaaAUEW7UacitTgMK+CeccBq4QpFw8yKc4zRQigg36jTkVqcBBfwTTjgNXKFIuFkRrnCcBkrRuXGjTkNhdRpQwP/RccJp4ApFws2LcI7TQCki3KjTUFidBhTwTzjhNHCFIuHmRTjHaaAUEW7UaSisTgMK+CeccBq4QpFw8yKc4zRQigg36jQUVqcBBfwTTjgNXKFIuHkRznEaKEWEG3UaCqvTgAL+CSecBq5QJNy8COeeNd0dNj1+2rT5uOlTnDctD5yOTsMMCec4DZQiwo06DYXVaUAB/4QTTgNXKBJuXoRznAZKEeFGnYbC6jSggH/CCaeBKxQJNy/COU4DpYhwo05DYXUaUMA/4YTTwBWKhJsX4RyngVJEuFGnobA6DSjgn3DCaeAKRcLNinCl4zRQCoQrR52G0uo0oIB3wpXCaeAKRcLNi3CO00ApItyo01BanQYU8E844TRwhSLh5kU4x2mgFBFu1GkorU4DCvgnnHAauEKRcPMinOM0UIoIN+o0lFanAQX8E044DVyhSLh5Ec5xGihFhBt1Gkqr04AC/gknnAauUCTcvAjnOA2UIsKNOg2l1WlAAf+EE04DVygSbl6Ec5wGShHhRp2G0uo0oIB/wgmngSsUCTcvwjlOA6WIcKNOQ2l1GlDAP+GE08AVioSbF+Ecp4FSRLhRp6G0Og0o4J9wwmngCkXCzYtwjtNAKSLcqNNQWp0GFPBPOOE0cIUi4WZFuMpxGigFwlWjTkNldRpQwDvhKuE0cIUi4eZFOMdpoBQRbtRpqKxOAwr4J5xwGrhCkXDzIpzjNFCKCDfqNFRWpwEF/BNOOA1coUi4eRHOcRooRYQbdRoqq9OAAv4JJ5wGrlAk3LwI5zgNlCLCjToNldVpQAH/hBNOA1coEm5ehHOcBkoR4UadhsrqNKCAf8IJp4ErFAk3L8I5TgOliHCjTkNldRpQwD/hhNPAFYqEmxfhHKeBUkS4UaehsjoNKOCfcMJp4ApFws2LcI7TQCki3KjTUFmdBhTwTzjhNHCFIuHmRTjHaaAUEW7UaaisTgMK+CeccBq4QpFwsyJc7TgNlALh6lGnobY6DSjgnXC1cBq4QpFw8yKc4zRQigg36jTUVqcBBfwTTjgNXKFIuHkRznEaKEWEG3UaaqvTgAL+CSecBq5QJNy8COc4DZQiwo06DbXVaUAB/4QTTgNXKBJuXoRznAZKEeFGnYba6jSggH/CCaeBKxQJNy/COU4DpYhwo05DbXUaUMA/4YTTwBWKhJsX4RyngVJEuFGnobY6DSjgn3DCaeAKRcLNi3CO00ApItyo01BbnQYU8E844TRwhSLh5kU4x2mgFBFu1GmorU4DCvgnnHAauEKRcPMinOM0UIoIN+o01FanAQX8E044DVyhSLhZEa5xnAZKgXDNqNPQWJ0GFPBOuEY4DVyhSLh5Ec5xGihFhBt1Ghqr04AC/gknnAauUCTcvAjnOA2UIsKNOg2N1WlAAf+EE04DVygSbl6Ec5wGShHhRp2Gxuo0oIB/wgmngSsUCTcvwjlOA6WIcKNOQ2N1GlDAP+GE08AVioSbF+Ecp4FSRLhRp6GxOg0o4J9wwmngCkXCzYtwjtNAKSLcqNPQWJ0GFPBPOOE0cIUi4eZFOMdpoBQRbtRpaKxOAwr4J5xwGrhCkXDzIpzjNFCKCDfqNDRWpwEF/BNOOA1coUi4eRHOcRooRYQbdRoaq9OAAv4JJ5wGrlAk3KwIl6wcq6FNgnL4OcY5/NpIOirhnXW46Y52XZ0i72bFOxZ8Se/tmMfy3EPG/YdRikN+72wTyu+I8JviiMEd1/C/kWkemXa2WtZp1eRFkSdNtqoabH5A3EuW9aqpVkm+Sso0zyqm4rJoyqqoiqaoVsWq3J63a+Uma8MkDXfcZCVvwE2jaof83rkpROIRjThy86RPwSWoV6RNnuTpqs6rFVgIaoKyTV43VVVkZZpmZYJxEbMT+Yo0rYsyX6UgZ+ejWtnJQjLpyNvTvMbZaZT4kN87O4WiPCIoR3ae+MmZ4slYlkmWZ3lVpDW/tJegJB6OTZIXKzxPUwhhzM7VKqEnZwPa1mWTZmDwgWfN8eFyO4KyTDggqFESRH7/x8yJU+YiQb/04xP8q/M0K8q6SlYVHqagIj9A+UqdNWlS1HWVZmg0SJouizSpszxZ1RlGBE1WbM66WbB5m2Lel3hHUpYWByQ1yojI73+HYrFBcSTpF36KZktQsCzqPE/xDM2LMtuc8XvevVLVDV8BTSu86Zu6STE+zbIiz5PNWXrgs7TbtmdHUxYkBzQ1io/I7397C7G7RaTpl6Vpind9lpdJXpcFBplZnYNyPEs/m7p2xHJoXv+8IyWLlgNSGgVK5Pe/EloshI6knJ1K1OnfO6YlrFYOqJYYdUkq4F8MF1p4JNvsyEbcaqVvQTdeFj2km3ENNBU4gQouRfBIuPkRjpfZJ7TMfks4XhY9JJxxDTQV8E84seiee0Ak3LwIx65LImyXZMJ3SazGCwr4J5ywXrgHRMLNi3BspSTCS0kmzJTE6qaggH/CCT+Fe0Ak3LwIx+5IIuyRZMIfSawGCQr4J5ywSLgHRMLNi3DsdiTC7kgm/I7EaniggH/CCcuDe0Ak3LwIx85FIqyLZMK7SKzmBQr4J5ywL7gHRMLNi3DsQSTChEgmXIjEakOggH/CCSOCe0Ak3LwIx/5CIgyGZMJhSKwWAwr4J5wwGbgHRMLNi3BsMyTCZ0gnfAYYZzbCoYB/wgmjgXtAJNysCEfsotXPwmlIJ5yG1Oo0oID/FdDCaeAeEAk3L8Kx05AKpyGdcBpSq9OAAv4JJ5wG7gGRcPMiXPd9h3Aa0gmnIbU6DSjgn3DyI4/oNMyQcOw0pMJpSCechtTqNKCAf8IJp4F7QCTcvAjHTkMqnIZ0wmlIrU4DCvgnnHAauAdEws2LcOw0pMJpSCechtTqNKCAf8IJp4F7QCTcvAjHTkMqnIZ0wmnYLm/XE+4ETkMqnAbuAZFw8yIcOw2pcBrSCacBX7MZCXcCpyEVTgP3gEi4eRGOnYZUOA3phNOQWp0GFPBPOOE0cA+IhJsX4dhpSIXTkE04DZnVaUAB/4QTTgP3gEi4WRGO2EV7WQinIZtwGrb7EegJdwKnIRNOA/eASLh5EY6dhkw4DdmE04CPuo2EO4HTkAmngXtAJNy8CMdOQya3kpraS8q8mdQJnIZMOA3cAyLh5kW4bnso4TRkE05DZnUaUMA/4eQeUdFpmCHh2GnIhNOQTTgNmdVpQAH/hBNOA/eASLh5EY6dhkw4DdmE05BZnQYU8E844TRwD4iEmxfh2GnIhNOQTTgN2OrRSLgTOA2ZcBq4B0TCzYtw7DRkwmnIJpyGzOo0oIB/wgmngXtAJNy8CMdOQyachmzCacisTgMK+CeccBq4B0TCzYtw7DRkwmnIJ5yG3Oo0oIB/wgmngXtAJNysCEfson2JhdOQTzgNudVpQAH/exMLp4F7QCTcvAjHTkMunIZ8wmnIrU4DCvgnnHAauAdEws2LcOw05MJpyCechtzqNKCAf8IJp4F7QCTcvAjHTkMuT6KYOorCfBbFCZyGXDgN3AMi4eZFuO5sCeE05BNOQ251GlDAP+HkARPRaZgh4dhpyIXTkE84DTgcwEi4EzgNuXAauAdEws2LcOw05MJpyCechtzqNKCAf8IJp4F7QCTcvAjHTkMunIZ8wmnIrU4DCvgnnHAauAdEws2LcOw05MJpyCechtzqNKCAf8IJp4F7QCTcvAjHTkMunIZiwmkorE4DCvgnnHAauAdEws2KcMQuOmBOOA3FhNNQWJ0GFPB/yJxwGrgHRMLNi3DsNBTCaSgmnIbC6jSggH/CCaeBe0Ak3LwIx05DIZyGYsJp2J5xrCfcCZyGQjgN3AMi4eZFOHYaCuE0FBNOQ2F1GlDAP+GE08A9IBJuXoRjp6GQx1hPnWNtPsj6BE5DIZwG7gGRcPMiXHcqtXAaigmnobA6DSjgn3DyaOroNMyQcOw0FMJpKCachsLqNKCAf8IJp4F7QCTcvAjHTkMhnIZiwmkorE4DCvgnnHAauAdEws2LcOw0FMJpKCachsLqNKCAf8IJp4F7QCTcvAjHTkMhnIZywmkorU4DCvgnnHAauAdEws2KcMQuEK4UTkM54TSUVqcBBbwTrhROA/eASLh5EY6dhlI4DeWE01BanQYU8E844TRwD4iEmxfh2GkohdNQTjgNpdVpQAH/hBNOA/eASLh5EY6dhlI4DeWE01BanQYU8E844TRwD4iEmxfh2GkohdNQTjgNpdVpQAH/hBNOA/eASLh5EY6dhlI4DeWE01BanQYU8E844TRwD4iEmxfh2GkohdNQTjgNpdVpQAH/hBNOA/eASLh5EY6dhlI4DeWE01BanQYU8E844TRwD4iEmxfh2GkohdNQTjgNpdVpQAH/hBNOA/eASLh5EY6dhlI4DdWE01BZnQYU8E844TRwD4iEmxXhiF0gXCWchmrCaaisTgMKeCdcJZwG7gGRcPMiHDsNlXAaqgmnobI6DSjgn3DCaeAeEAk3L8Kx01AJp6GacBoqq9OAAv4JJ5wG7gGRcPMiHDsNlXAaqgmnobI6DSjgn3DCaeAeEAk3L8Kx01AJp6GacBoqq9OAAv4JJ5wG7gGRcPMiHDsNlXAaqgmnobI6DSjgn3DCaeAeEAk3L8Kx01AJp6GacBoqq9OAAv4JJ5wG7gGRcPMiHDsNlXAaqgmnobI6DSjgn3DCaeAeEAk3L8Kx01AJp6GacBoqq9OAAv4JJ5wG7gGRcPMiHDsNlXAa6gmnobY6DSjgn3DCaeAeEAk3K8IRu0C4WjgN9YTTUFudBhTwTrhaOA3cAyLh5kU4dhpq4TTUE05DbXUaUMA/4YTTwD0gEm5ehGOnoRZOQz3hNNRWpwEF/BNOOA3cAyLh5kU4dhpq4TTUE05DbXUaUMA/4YTTwD0gEm5ehGOnoRZOQz3hNNRWpwEF/BNOOA3cAyLh5kU4dhpq4TTUE05DbXUaUMA/4YTTwD0gEm5ehGOnoRZOQz3hNNRWpwEF/BNOOA3cAyLh5kU4dhpq4TTUE05DbXUaUMA/4YTTwD0gEm5ehGOnoRZOQz3hNNRWpwEF/BNOOA3cAyLh5kU4dhpq4TQ0E05DY3UaUMA/4YTTwD0gEm5WhCN2gXCNcBqaCaehsToNKOCdcI1wGrgHRMLNi3DsNDTCaWgmnIbG6jSggH/CCaeBe0Ak3LwIx05DI5yGZsJpaKxOAwr4J5xwGrgHRMLNi3DsNDTCaWgmnIbG6jSggH/CCaeBe0Ak3LwIx05DI5yGZsJpaKxOAwr4J5xwGrgHRMLNi3DsNDTCaWgmnIbG6jSggH/CCaeBe0Ak3LwIx05DI5yGZsJpaKxOAwr4J5xwGrgHRMLNi3DsNDTCaWgmnIbG6jSggH/CCaeBe0Ak3LwIx05DI5yGZsJpaKxOAwr4J5xwGrgHRMLNi3DsNDTCaUhWE1YDLhgpRyX8c06YDdwJIueC5NwfNp8HhPvFXz7d3v/y85/5J4D8LkkIyadPu0u7K+d05Z8WnH7BP3qWfn56/s23i5/wv4szKvwU99nRgkuulklBP/96e/v+Tyj5kND/mTxiZdxTA7ZMpdzeuZwIHyMZ8TEQ5y/A5JYVv7u9QsOB8FmxRAcikJdlkzbi/+oW9S5oR6KeTqKOKwbUhUzKJR9H/RE/4QHqJzATXKoGh3qR+gQ6mwQaVwxAC3mSSz4O9CM6/gOgTyDiu+wMDugMu+T7AzqfBBpXDEALWZBLPg70I/r5A6BPIJ677AwO6KSp5HMc4pc/2AHNBOwtaGrYhTjHJR+H/REV+wHsJ5CwXa4GB/sqc17fOXYO8od7OYk7rhhwFxoZl3wc90fE5Ae4n0BJdskaGO5nCGCWrsT/4dXjD/dqEndcMeAupCou+Tjuj2i6D3A/gaDrkjU83NOmcnD3+ZyvJ3HHFQPuQjHiko/j/oi0+gD3E+iqLlnDwz0vnf7us7s3k7DjigF2Idpwycdhf0TgfAD7CdRNl6vhwV6m5Ymm52nb6DHY6Yoe9lToG1zyUdjTR0RGF3bk9g+7w9XwYK8ap7d7nMOlk1ocXTHALgQOLvk47CYtDrm9w+5yNTzYm8J5ufuEfVKMoysG2IXcwSUfh90kxiG3f9gdroYGe7JM0pP19klpjq4YYBfiB5d8HHaTNIfc/mF3uBoe7Cm+FPSH9KQ2R1cMSAu9g0s+jrRJm0Nu/0g79AwP6bzwOF5PJ+U4umJAWigcXPJxpE1yHHL7R9qhZ3hIl5g7+kN6UoCjKwakhabBJR9H2iTAIbd/pB16hod0hc2hDkN6DUNwBxUhjOl9B8Yfj7a8L0yWN+X+WixvRN2n5b0mzVULo9nDvjB52JT7a/GwtzAe7mGv4d+pkTOb0hcmU5pyfy2m9Ba5w03pNSw4NXJml/nC5DJT7q/FZd4i58tlXpNvocXRbBtfmGxjyv212MZbHL3Zxmt4ZGogzT7whckHptxfiw/MQHr0gdc0cdECaTZ2L0zGLuX+WozdHkhfxu4aNpYaSLNTe2Fyain31+LU9kB6cmrX8KXUOJqt1wuT9Uq5vxbrtcfRk/W6htGkxdHupV6YvFTK/bV4qT2OnrzUNZwjNY5mc/TCZI5S7q/FHO1x9GSOrmEFqXE0u50XJreTcn8tbmeHoze3cw2jR42j2b68MNmXlPtrsS97HA+3L9dwbtTQmf3IC5MfSbm/Fj+yh+5wP3INK0YNndlgvDAZjJT7azEYe+gONxjXcOnU0JkdwwuTY0i5vxbHsIfucMdw6wALcxjG2tACnl6b6zhyurW5pkWayO0Zz/NwphLbj23qonYkGo9ojizCm7bzBc11Zr7Jy/cOZDhjUAYyXSY4nNMfdiMr6SaxEwMD3TI60yo676PQ83DGnVvsVmTeesNuZG3cJHZiZKBbGGdaF+d9GHoezsCTsUuWde7ahx6BHFn6NgmkGCfo1r2Zlr15H5SehzMM3QJZ1n52jRgBcmRl2ySQYpSqW9ZmWtXmfYh6Hs6gdAtkkTg90ieQI9+KTgIpD2pXAWn6TtS7m3gejn+4BTIrfL4WR773nMROnkSiws70rad3A/E8HMtwi11SO53w4BXEI0COfME5CaTcdEsFpOnrTe8O4nk4nuEWyBVp0ge6vXqX0D6ZvzBN5in3z3cyv10C5Wkyvza4ScZ5+4XNSvoZz9sZs2Pm7Wu9WWSdol+YnKKf8xR9C9PhU/S13hiyzsYvTK7Qz3k2zjB5m42v9Y6QdeJ9YbKDfs4T7y1mnibea70VZJ1jX5h8oJ/zHHuLmac59lq/QNc6nb4wrc79OU+nt5gdPp1e65ffWmfOF6a1tz/nmfMWJk8z57V+qa11knxhWmf7c54kbzE7ZpL8KExjc1/T1FcPQDAhTZdZfvgquodvFcyyvM1fTa8V5Pa/JMRZxxIIbtkSs5xjfeiR3QImt22kK/t2C6BiWJ7iCfb/NMFOub8W2AH2CWCf3LWRrhwOu3mlAj7HtsB+gi+DUjHuZRIGBfsRKxdGYJ/ctZGuHA67eZFDanIBkNs/7GIczSQMCHZ/ix6GHMgmt3CkK4dzwLw+IjOtFURu/xwQ43JmZFAc8LVeYoQDk/s50pXDOWBeWpGZdndEbu8cyIQvxowMigO+llqMcGByc0e6cjgHzKsyMtNKU+T2zwHx8RMzMigOHLFKYwT2yc0d6crhsJsXdGS2Raon+FYqE5MUJmFQsPta4DHCgcltH+nK4RwwrwXJTItdkds/B+SMJRS3bceBw2WvMdgn94CkK4fDfsB3IplpcSxy+wdezFmYhgEB7++rkREWTO4PSVeOYIH9nL3MtLIWuf2zQMxamJNBseB05+xlk7ofXTmCBfZz9zKT8ofc/lkg5i3MyaBY4PXcvWxS+aMrRwBvP4cvM2l/yO0feDFZYRoGBbzXc/iySe2PrhwBvP1cvsyk/iG3f+DFdIVpGBTwJzyXL5+U/+jKETSwn9OXmwRA5PZPAzFjYVIGRYNTntOXT0qAdOUIHtjP7ctNIiBye+dBLmYwzMqAeHDac/vySRmQrhzBA/s5frlJCERu/zwQcxhmZVg8OOE5fvmkLkhXjuCB/Vw/rEux8OAEymAuZjHMyrB4cLpz/fJJaZCuHEED+zl/ue1L+BOIg7mY0zApw6LB6c75yyelQrpyxLIg+7l/uUkqRG7/NJDLG0KTCk967l8+qRXSlSNoYD8HMDdphcjtnwZihsOkDIsGpzsHMJ8UC+nKETSwnwuYm8RC5PZPAzHBYVKGRINTnguYT0qHdOUIGtjPCcxN0iFy+6eBmN8wKcOigddzAvNJ7ZCuHIG8/dzA3KQdIrd/5MWMhnkYFvJezw0sJuVCunIE8vZzBAuTXIjc/pEXkxjmYVjIez1HsJgUCOnKEcjbzxUsTAIhcntHvhDzFuZhWMgfsUvoCPKTkiBdOQJ5Z6W9DnmTJIjc/pEXUxXmYVjIwxXwiPykCEhXjkDeWWyvQ94kAiK3f+TF7IR5GBLy+CDIpw1QTOp+dOUI5J0l9jrkTbofcvtHXkxImIdhIZ9WcqbvcW1YMSn70ZUjPgtzFtnrWGDbPvMEsl8hJifMybBYkMOZ8If8pNJHV45A3llar0PepPQht3/k5bdMwSl96bJc+XznT4p7dOUI5J3V9TrkTeIecvtHXkxOmIdhIV9VpzL+iklxj64cQQNngb2OBiZxD7n900DMVJiUYdGgyU4l9ReTSh9dOYIGznJ7HQ1MSh9y+6eBmLYwKUOiQbZMVqeS+stJ2Y+uHEEDZ729bvdtk+yH3P5pIOYwTMqwaJCWp3oalJMaIF05ggbOgnsdDUwaIHJ7p0EpJjFMyrBokLuLBD2uFS0nBUG6cgQNnOX3OhqYBEHk9k8DMaNhUoZFg6JxFgV5XCJYTqqDdOUIGjiL8XU0MKmDyO2fBmJ6w6QMiwaVu0TQJw0mpUK6cgQNnMX4OhqYpELk9k8DMb1hUoZFgyZ1xgY+aTCpFdKVI/YSctbi62hg0gqR2z8NxPSGSRkSDfLlyl0i6JMGk8IhXTmCBs5SfB0NbAf1nEA4LMX0hkkZFg1SZ4mgR+OgnBQR6coRLHAW4utYYBIRkds/C+Q2SMGJiPkyp8PMvSE/qRvSlSOQd9be65A36YbI7R95MaFhHoaFfFGfqv9PyoZ05QgWOEvvdSwwyYbI7Z8FYj7DnAyLBVUhBwMeWVBNqoZ05QgWOCvvdUe9mVRD5PbPAjGdYU6GxYLG52LBalIopCtHIO8sttchbxIKkds78pWYwTAPQ0K+WK7qU/X/SZ2QrhzBAmetvY4FJp0Quf2zQExgmJNhsSD1uXCwmpQG6coRyDtr7XXIm6RB5PaPvJi0MA/DQj5PTtX/J5VBunIEC5x19zoWmJRB5PbPAjGBYU6GxYKi8tn/J8VAunLEptLOunsd8iYxELn9Iy8mLczDsJCv8lP1/0ktkK4cwQJnDb6OBSYtELn9s0BMWpiTYbGg8bmIsJrU/+jKEcg7a/B1yNtO+T6B/leJSQvzMCTky+XKWUTos/9PaoF05QgWOOvxdSwwaYHI7Z8FciP04LTAcpliw0N/yE/qf3TlCOSdNfg65E36H3L7R15MWpiHYSGfr5LTHC1ST+p/dOUIFjjr8VUsqE36H3L7Z4GYtDAnw2JBAYPCH/KT+h9dOQJ5Zz2+DnmT/ofc3pGvxaSFeRgW8pWzUNDj+7+e1P/oyhEscJbj61hg0v+Q2z8LxKSFORkWC2pnL0GPjnA9qQXSlSNY4KzG17HApAUit38WiAkMczIkFlTLVXmqscCkFkhXjmCBsxhfxwKTFojc/lkgJjDMybBYkNKBrt6Qn9QC6coRh4s56+91yJu0QOT2j7yYwDAPw0I+cxYG+hwLTGqBdOUIFjjL73UsMGmByO2fBWICw5wMiwUFPnL0h/ykFkhXjkDeWXGvQ96kBSK3f+TFBIZ5GBbylbNboM/+P6kF0pUjWOAsuNexwKQFIrd/FogJDHMyLBbUzrpAn8vD60lhkK4cQQNnwb2OBiZhELn900AekhicMFgvVz53DmwmxUC6cgTyzhp7FfKNSQxEbv/Ii1kL8zAs5FOfiwGbSTGQrhyBvLOuXoe8SQxEbu/IN2LWwjwMC/nsVIsBm0kxkK4cwQJnjb2OBSYxELn9s0DMWpiTYbGg8LkYsJkUAOnKEcg76+p1yJsEQOT2j7yYtTAPw0K+8rmLYDMp+tGVI5B31tLrkDeJfsjtH3kxU2EehoV87XMBYDMp+tGVI06Td9bS65A3iX7I7R95MTlhHoaEfLNc+dw5sJkU+ujKEcg76+d1yJuEPuT2j7yYnDAPw0I+9bnor5kU+ujKEcg76+d1yJuEPuT2j7yYnDAPw0I+cxb9+ez/k0IfXTmCBc76eR0LTEIfcvtngZicMCfDYkGROZsDeWTBpM5HV45ggbOWXscCk86H3P5ZICYqzMmwWFD57P/JalLoay8dgb2zgl6FPf6iBXzK7h99MVlhLoaFfn3wwr81HUTvgIdd6Kd2cxKbOWmgu8C99chRbu/AuedTBAMcNvIDcOlylRy6s+M6xZNeiZvccEGHm+VxS7n94+acLhEYbsmyzt3D3A8FMaO660CU66VVIOLeBhCR2z+IzkERwYFY1s5R7IcetbrOoLArQZRuhw5Ei9lBuf2fp++c8xAciEXi9MTDQcTwSQmi/AhIB6LFq6Dc/kF0jmwIDsQMJ7IcihtKKnGTTr0ON4vTQLn94+YcuBAcbkntdL6Dx6AZbqgEUQ7EdSBaTAPK7R9E57iE4EBcpYd3PqwqUuKWiNcI/dAgZxH9Kbd/5JwTDgJDbrWsi1ou8TrU6F9npR5G8SJJVAr+Be5ugfEECr57QkFwMJaNp3Eonr9aGMV7JVHJ8Re4uwXGE8jx7gkDwcFYkJJyIHJ6DSYRL5NEp8Lg7hbkTqDCuIcCBIdchl2+D0VOr8Ik4mWS6HQY3N2C3Al0GHcf/+CQSxpXhzl0lfM61wsxiXibMH6P4oi7G3BEbv84OhvxB4fjKnNegTm2WDoUSL0Yk4j3SaKTY3B3C5AnkGPcrfQDA/IMAXRPrDl4Jdqa1rNogRSvl0QnyeDuFiBPIMm4m+GHB2TqfEu+Sg5/tOoVmkS8bRKdRoO7W4A8gUbj7mcfHpC5e2rM4R1SL9Ik4m2T6GQa3N2C4wlkGnd3+vBwLFNnncfBk41cL9qk4mWT6kQb3N2C4wlEG3d/+fBwrNxzWw6eeuR61SYV75pUp9rg7hYcT6DauDvEh4dj4xy8cgSOetkmFa+aVCfb4O4WHE8g27j7vYeGI0wM53PpI3DUizipeNWkOhEHd7fgeAIRx92xPTwcU3yFfSh0ehUnFW+XVKfi4O4W6E6g4rhbrocHXX7wR8rrQi/cpOKFkuqEG9zdAB1y+4fO2Sc9POjKg78yXhd6qSYV75BUJ9Xg7hboTiDVuBudhwddhc3LDoVOL864KzB10JnEGeT2D52zO3l40EEhPRg6vRzjLsLUQWeSY5DbP3TO9uKhQYdgHy6JFnoFxl16qYPOpMAgt3/onD3Bw4MurXwctbcu9AKMu/hSB6NJgEFu/zA6G3yHB2N+8Key60KvubhLLnXQmTQX5PYPnbMrd3jQlQd/67qm7fC00DmrLnXQmWQW5PYPnbOtdnjQVc7HqofbEIXheyVn4aUOR5PMgtz+cXQ2xg4PxybzI3sWes3FXYapw9GkuSC3fxydra1DwzFbJis/smepF2DcdZgqHHF3A47I7R9HZ3Pq8HBMSz/9sdSrMe5CTB2OJjUGuf2f3etsNR0ejrm7cObgBVClXppxl2XqcDRJM8jtH0dns+jwcCwax6Y/eNkMrUnV4ugs0tThaNJpkNs/js7Wz+HhWLnLZg7HUS/auIs0dTiaRBvk9o+js3lzeDg2qZd9kNelXrVx12jqcDSpNsjtH0dn9+XQcMyXK3fZzOE46iUcd4mmDkeThIPc/nF09lIOD8fUWTZzsIhKG55oYXQWaOpgNMk5yO0fRmdj5PBgzNODFZxSr+C4azJ10JkUHOT2D52zm3F40BXOyQCH90DDBjTOkkwdjCYBB7n9w+hsTRwejFXhY5fvdaXXb9wVmSoYcXcDjMjtH0Znn+HwYGwOX0BT6SUbdxGmDjqTZIPc/o9bdTYKDg26Yrnyss/+utIrNu4aTB2MJsUGuf3D6Oz6Gx6M6eGLaSq9SOOuwdRBZxJpkNs/dM62veFBlyd+eqBeo3HXY+pgNGk0yO0fRmff3fBgLA7etn5d6WUZdz2mDjqTLIPc/qFzNssND7oq99MD9aqMuzZTB6NJlUFu/zA6+96GB2Nz+MIa6rta6Jy1mTroTEoMcvuHTgydmUghQVcuV87CmsN7oF6Vcddp6mA0qTLI7R9GuW1jcKpMuUxp+6YDodMrMe7aTB10JiUGuf1DJ4bOTKSwoMtXPg5cX9eGzYCddZoqGHF3A4zI7R9GMXRmUoUFY3H4Juq1Xolx12nqoDMpMcjt/6xLMXRmIoUFXeUsnjn4HUgfRGlhdJZp6mA0KTHI7R9GMXRmUoUFY+3sOXOwwVTrVRl3laYORpMqg9z+YRTDaCZVSDBWy1Xp532oV2XcRZo6GE2qDHL7h1EMo5lUYcGY4sCMQ6HTqzLuukwddCZVBrn9QyeG0UyksKDLnMUyh78P9aqMuyxTB6NJlUFu/zCKYTSTKiwYC/po6UDo9KqMuxJTB51JlUFu/9CJYTQTKSzoKmdXmcN7oF6VcRdi6mA0qTLI7R9GMYxmUoUFY+2slTl81WGtl2jchZg6HE0SDXL7x1EerhGcRFMvV4fvMIMT/tXQOWsvVdDh7gbokNs/dGLszEQKC7r08AUyOJZfDZ2z3lIHnUmWQW7/xxKKsTMTKSzoMj8LZHDGvhpGZ+2lDkaTLIPc/mEUY2cmVVgwFocvkMEh+WronPWWOuhMUgxy+4dOjJ2ZSGFBVx2+2wxOuVdD56yx1EFnkl+Q2z90YrzMRAoLuvrwRTH01aH2MDtnjaUOOpP8gtz+oRNDZCZSSNA1y9XhO8zgnHk1dM66Sh10JskFuf1DJ4bITKSwoEsPXwhD599poXPWVeqgM0kuyO0fOjFEZiKFBV3mLIQ5vAfqJRd3XaUORpPkgtz+YRRDZCZVWDAWmfMB/cEw6hUXd42lDkaT4oLc/mEUw2UmVVgwVof3QDrCX42ds7BShR3d3gAeZfePnjzHNDjRpVnWU2thELSbO7S+vS+l325u325efrz81/8PUEsBAhQAFAAAAAgA03hRW6D7NLgpBQAArCYAABcAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2RlZmF1bHRzMmQueG1sUEsBAhQAFAAAAAgA03hRW80Hp1d3AwAAYBEAABcAAAAAAAAAAAAAAAAAXgUAAGdlb2dlYnJhX2RlZmF1bHRzM2QueG1sUEsBAhQAFAAAAAgA03hRW0XM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAACgkAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAAACADTeFFbecmeHMVFAACwnwQADAAAAAAAAAAAAAAAAABYCQAAZ2VvZ2VicmEueG1sUEsFBgAAAAAEAAQACAEAAEdPAAAAAA==", +}; +// is3D=is 3D applet using 3D view, AV=Algebra View, SV=Spreadsheet View, CV=CAS View, EV2=Graphics View 2, CP=Construction Protocol, PC=Probability Calculator DA=Data Analysis, FI=Function Inspector, macro=Macros +var views = {'is3D': 1,'AV': 0,'SV': 0,'CV': 0,'EV2': 0,'CP': 0,'PC': 0,'DA': 0,'FI': 0,'macro': 0}; +var applet = new GGBApplet(parameters, '5.0', views); +window.onload = function() {applet.inject('ggbApplet')}; +applet.setPreviewImage('','https://www.geogebra.org/images/GeoGebra_loading.png','https://www.geogebra.org/images/applet_play.png'); +</script> +</body> +</html> |
