From 29870f542da6f1ec4dd028a4255143b638f48ba8 Mon Sep 17 00:00:00 2001 From: Christian Kolset Date: Fri, 29 Aug 2025 12:41:42 -0600 Subject: Updated canvas to actually refer to the notes in the vault. This results in the label creation at the top header to reference when showing the block. --- tutorials/module_4/1_importing_scientific_data.md | 40 +++++++++++++++++++++++ tutorials/module_4/2_data_processing.md | 17 ++++++++++ tutorials/module_4/3_linear_regression.md | 24 ++++++++++++++ tutorials/module_4/data_processing.md | 1 - tutorials/module_4/data_visualization.md | 3 ++ tutorials/module_4/importing_scientific_data.md | 1 - tutorials/module_4/linear_regression.md | 18 ---------- tutorials/module_4/plotting.md | 2 ++ 8 files changed, 86 insertions(+), 20 deletions(-) create mode 100644 tutorials/module_4/1_importing_scientific_data.md create mode 100644 tutorials/module_4/2_data_processing.md create mode 100644 tutorials/module_4/3_linear_regression.md delete mode 100644 tutorials/module_4/data_processing.md delete mode 100644 tutorials/module_4/importing_scientific_data.md delete mode 100644 tutorials/module_4/linear_regression.md (limited to 'tutorials/module_4') diff --git a/tutorials/module_4/1_importing_scientific_data.md b/tutorials/module_4/1_importing_scientific_data.md new file mode 100644 index 0000000..b51558b --- /dev/null +++ b/tutorials/module_4/1_importing_scientific_data.md @@ -0,0 +1,40 @@ +# Importing Scientific Data using Pandas + +^8eb966 + +[Introduction text] + + +Pandas is a library that is built on top of NumPy and is there for customarily to import both when working with Pandas. + +```python +import numpy as np +import pandas as pd +``` + + +DataFrame + +A `DataFrame` in pandas is a two-dimensional data structure like table with rows and columns. + + + +```python +# Tensile test data +data = { + "Force (N)": [10, 15, 20, 25], + "Displacement (mm)": [1.2, 1.8, 2.5, 3.0], + "Stress (MPa)": [2.6, 3.9, 5.2, 6.5], +} +``` + + + +Object Creation + +```python +# Create DataFrame with row labels +df = pd.DataFrame(data, index=["Test1", "Test2", "Test3", "Test4"]) + +print(df) +``` \ No newline at end of file diff --git a/tutorials/module_4/2_data_processing.md b/tutorials/module_4/2_data_processing.md new file mode 100644 index 0000000..f969b2d --- /dev/null +++ b/tutorials/module_4/2_data_processing.md @@ -0,0 +1,17 @@ +# Data Processing + +^7b1480 + + +## Data Cleaning and Filtering + + + + + + + +--- +## Reading & Writing Files + + diff --git a/tutorials/module_4/3_linear_regression.md b/tutorials/module_4/3_linear_regression.md new file mode 100644 index 0000000..298d411 --- /dev/null +++ b/tutorials/module_4/3_linear_regression.md @@ -0,0 +1,24 @@ +# Linear Regression + +^aab594 + + + +## Statical tools +Numpy comes with some useful statistical tools that we can use to analyze our data. + +### Mean +The mean is the average of a set of numbers. It is calculated by summing all the numbers and dividing by the count of numbers. + +```python +import numpy as np + +mean = np.mean([1, 2, 3, 4, 5]) +median = np.median([1, 2, 3, 4, 5]) +std = np.std([1, 2, 3, 4, 5]) +variance = np.var([1, 2, 3, 4, 5]) +``` + + + +### diff --git a/tutorials/module_4/data_processing.md b/tutorials/module_4/data_processing.md deleted file mode 100644 index 0f2795e..0000000 --- a/tutorials/module_4/data_processing.md +++ /dev/null @@ -1 +0,0 @@ -# Data Processing diff --git a/tutorials/module_4/data_visualization.md b/tutorials/module_4/data_visualization.md index 43b0170..fc02427 100644 --- a/tutorials/module_4/data_visualization.md +++ b/tutorials/module_4/data_visualization.md @@ -1 +1,4 @@ # Data Visualization + +^1ac244 + diff --git a/tutorials/module_4/importing_scientific_data.md b/tutorials/module_4/importing_scientific_data.md deleted file mode 100644 index 5f3e48a..0000000 --- a/tutorials/module_4/importing_scientific_data.md +++ /dev/null @@ -1 +0,0 @@ -# Importing Scientific Data \ No newline at end of file diff --git a/tutorials/module_4/linear_regression.md b/tutorials/module_4/linear_regression.md deleted file mode 100644 index b21415b..0000000 --- a/tutorials/module_4/linear_regression.md +++ /dev/null @@ -1,18 +0,0 @@ -# Linear Regression - - - -## Statical tools -Numpy comes with some useful statistical tools that we can use to analyze our data. - -### Mean -The mean is the average of a set of numbers. It is calculated by summing all the numbers and dividing by the count of numbers. - -```python -import numpy as np - -mean = np.mean([1, 2, 3, 4, 5]) -median = np.median([1, 2, 3, 4, 5]) -std = np.std([1, 2, 3, 4, 5]) -variance = np.var([1, 2, 3, 4, 5]) -``` diff --git a/tutorials/module_4/plotting.md b/tutorials/module_4/plotting.md index 42f82cc..43bea2e 100644 --- a/tutorials/module_4/plotting.md +++ b/tutorials/module_4/plotting.md @@ -1,4 +1,6 @@ # Plotting +^c3a51d + ## matlibplot -- cgit v1.2.3