{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Modular Programming\n", "\n", "## 1. Introduction\n", "\n", "- A. What is Object-Oriented Programming?\n", "- B. Why use OOP? (vs. procedural)\n", "- C. Real-world analogies (e.g., modeling components like pumps,\n", " motors, or vehicles)\n", "\n", "| \\## 2. Core OOP Concepts - A. **Classes and Objects** - Definitions - Syntax in Python - B. **Attributes and Methods** - Instance variables - Functions inside classes - C. **Encapsulation** - Public vs private variables - Using `__init__` and `self` - D. **Inheritance** - Parent and child classes - Reuse and extension of code - E. **Polymorphism** *(brief overview)* - Method overriding - Flexibility in interfaces |\n", "|----:|\n", "| \\## 3. Python OOP Syntax and Examples - A. Define a simple class (e.g., `Spring`) - B. Instantiate objects and use methods - C. Show `__init__`, `__str__`, custom methods - D. Add a derived class (e.g., `DampedSpring` inherits from `Spring`) |\n", "\n", "## 4. Engineering Applications of OOP\n", "\n", "- A. Modeling a mechanical system using classes\n", " - Example: Mass-Spring-Damper system\n", "- B. Creating reusable components (e.g., `Material`, `Beam`, `Force`)\n", "- C. Organizing simulation code with OOP\n", "\n", "------------------------------------------------------------------------\n", "\n", "## 5. Hands-On Coding Activity\n", "\n", "- A. Write a class for a basic physical component (e.g., `Motor`)\n", "- B. Add behavior (e.g., `calculate_torque`)\n", "- C. Extend with inheritance (e.g., `ServoMotor`)\n", "- D. Bonus: Integrate two objects to simulate interaction" ], "id": "8358dbad-84d7-4413-ae4a-bd5eedae2a3b" } ], "nbformat": 4, "nbformat_minor": 5, "metadata": {} }