# Systems of Non-linear equations So far we've solved system of linear equations where the equations come in the form: $$ f(x) = a_1x_1 + a_2x_2 + \ldots + a_nx_n-b = 0 $$ where the $a$'s and $b$ are constants. Equations that do not fit this format are called *non linear* equations. For example: $$ x^2 + xy = 10 $$ $$ y+3xy^2=57 $$ these are two nonlinear equations with two unknowns. To solve this system we can This roots of single equations and solved system of equations, but what if the system of equations are dependent on non-linear. $$ \begin{align*} f_{1}(x_{1},x_{2},\ldots ,x_{n}) &= 0 \\ f_{2}(x_{1},x_{2},\ldots ,x_{n}) &= 0 \\ &\ \vdots \\ f_{n}(x_{1},x_{2},\ldots ,x_{n}) &= 0 \end{align*} $$ We've applied the Newton-Raphson to ## Problem 1: Newton-Raphson for a Nonlinear system Use the multiple-equation Newton-Raphson method to determine the roots of the following system of non-linear equations $$ \begin{cases} u(x,y) = x^2 + xy - 10 = 0 \\ v(x,y) = y + 3xy^2 - 57 = 0 \end{cases} $$ after a) 1 iteration b) Write a python function that iterates until the tolerance is within 0.002 Note the solution to $x$ =2 and $y$ = 3. Initiate the computation with guesses of $x$ = 1.5 and $y$ = 3.5. Solution: a) ```python u = lambda x, y: x**2 + x*y - 10 v = lambda x, y: y + 3*x*y**2 - 57 # Initial guesses x_0 = 1.5 y_0 = 3.5 # Evaluate partial derivatives at initial guesses dudx = 2*x_0+y_0 dudy = x_0 dvdx = 3*y_0**2 dvdy = 1 + 6*x_0*y_0 # Find determinant of the Jacobian det = dudx * dvdy - dudy * dvdx # Values of functions valuated at initial guess u_0 = u(x_0,y_0) v_0 = v(x_0,y_0) # Substitute into newton-raphson equation x_1 = x_0 - (u_0*dvdy-v_0*dudy) / det y_1 = y_0 - (v_0*dudx-u_0*dvdx) / det print(x_1) print(y_1) ``` b) ```python import numpy as np def newton_raphson_system(f, df, g0, tol=1e-8, max_iter=50, verbose=False): """ Newton-Raphson solver for a 2x2 system of nonlinear equations. Parameters ---------- f : array of callables f[i](x, y) should evaluate the i-th equation. df : 2D array of callables df[i][j](x, y) is the partial derivative of f[i] wrt variable j. g0 : array-like Initial guess [x0, y0]. tol : float Convergence tolerance. max_iter : int Maximum iterations. verbose : bool If True, prints iteration details. Returns ------- (x, y) : solution vector iters : number of iterations """ x, y = g0 for k in range(1, max_iter + 1): # Evaluate system of equations F1 = f[0](x, y) F2 = f[1](x, y) # Evaluate Jacobian entries J11 = df[0][0](x, y) J12 = df[0][1](x, y) J21 = df[1][0](x, y) J22 = df[1][1](x, y) # Determinant det = J11 * J22 - J12 * J21 if det == 0: raise ZeroDivisionError("Jacobian is singular") # Solve for updates using 2x2 inverse dx = ( F1*J22 - F2*J12) / det dy = ( F2*J11 - F1*J21) / det3 # Update variables x_new = x - dx y_new = y - dy if verbose: print(f"iter {k}: x={x_new:.6f}, y={y_new:.6f}, " f"|dx|={abs(dx):.2e}, |dy|={abs(dy):.2e}") # Convergence check if max(abs(dx), abs(dy)) < tol: return np.array([x_new, y_new]), k x, y = x_new, y_new raise ValueError("Newton-Raphson did not converge") # ------------------- # Example usage # ------------------- # Define system: u(x,y), v(x,y) u = lambda x, y: x**2 + x*y - 10 v = lambda x, y: y + 3*x*y**2 - 57 # Partial derivatives dudx = lambda x, y: 2*x + y dudy = lambda x, y: x dvdx = lambda x, y: 3*y**2 dvdy = lambda x, y: 1 + 6*x*y f = np.array([u, v]) df = np.array([[dudx, dudy], [dvdx, dvdy]]) g0 = np.array([1.5, 3.5]) sol, iters = newton_raphson_system(f, df, g0, tol=1e-10, verbose=True) print("Solution:", sol, "in", iters, "iterations") ```