diff options
| author | Christian Kolset <christian.kolset@gmail.com> | 2024-12-21 20:49:12 +0100 |
|---|---|---|
| committer | Christian Kolset <christian.kolset@gmail.com> | 2024-12-21 20:49:12 +0100 |
| commit | f1b305514a9eff23a7d6f75a890fb9ae7e3be0d7 (patch) | |
| tree | 3c061756334dbd4b2afd3a907eaf551cb490b67b /Functions | |
| parent | 6c7bb93c5e970d442c2bd64a582a5dabd03153e4 (diff) | |
Fixed bullet points
Diffstat (limited to 'Functions')
| -rw-r--r-- | Functions/README.md | 66 |
1 files changed, 33 insertions, 33 deletions
diff --git a/Functions/README.md b/Functions/README.md index 07a3349..8e881b3 100644 --- a/Functions/README.md +++ b/Functions/README.md @@ -19,7 +19,7 @@ The syntax of the function is `days(<months>, <days>, <leap>)` where `<months>` * `leap` - indicates if the year is a leapyear or a regular year. `0` for regular and `1` for leap year. ### Output -`nd` - number of days elapsed in the year. +* `nd` - number of days elapsed in the year. ### Example: `days(8,4,0)` represents August 8th in a regular year (non-leap year). @@ -31,18 +31,18 @@ Function finds the root of an anonymous function using the false position method Synopsis: `[root, fx, ea, iter] = falsePosition(func, xl, xu, es, maxit, varargin)`. ### Input -`func` - the function being evaluated. -`xl` - lower bound guess. -`xu` - upper bound guess. -`es` - desired relative error (default 0.0001%) -`maxit` - maximum number of iterations (default 200) -`varargin` - any additional parameters used by the function +* `func` - the function being evaluated. +* `xl` - lower bound guess. +* `xu` - upper bound guess. +* `es` - desired relative error (default 0.0001%) +* `maxit` - maximum number of iterations (default 200) +* `varargin` - any additional parameters used by the function ### Output -`root` - estimated root location. -`fx` - function evaluated at root location. -`ea` - approximated relative error (%). -`iter` - number of iterations performed. +* `root` - estimated root location. +* `fx` - function evaluated at root location. +* `ea` - approximated relative error (%). +* `iter` - number of iterations performed. ### Notes: Known issue: the output of `iter` needs fixing. The output is incorrect. @@ -54,16 +54,16 @@ Uses the heun method to integrate an ODE. Synopsis: `[t,y] = Heun(dydt,tspan,y0,h)`. ### Input -`dydt` -the differential equation of interest (must be anonymous function). -`tspan` - the initial and final values of the independent variable as a vector with length=2 [ti,tf]. -`y0` - the initial value of the dependent variable. -`h` - step size. -`es` - stopping criterion (%), optional (default = 0.001). -`maxit` - maximum iterations of corrector, optional (default = 50). +* `dydt` -the differential equation of interest (must be anonymous function). +* `tspan` - the initial and final values of the independent variable as a vector with length=2 [ti,tf]. +* `y0` - the initial value of the dependent variable. +* `h` - step size. +* `es` - stopping criterion (%), optional (default = 0.001). +* `maxit` - maximum iterations of corrector, optional (default = 50). ### Output -`t` - vector of independent variable values -`y` - vector of solution for dependent variable +* `t` - vector of independent variable values +* `y` - vector of solution for dependent variable ### Notes: This function needs some working on to compute a correct solution when using multiple steps with an irregular step size at the end. @@ -76,12 +76,12 @@ Performs LU decomposition with pivoting. Synopsis: `[L, U, P] = luFactor(A)`. ### Input -`A` - a coefficient matrix. +* `A` - a coefficient matrix. ### Output -`L` - lower triangular matrix, with 1's along the diagonals. -`U` - upper triangular matrix. -`P` - the permutation matrix. +* `L` - lower triangular matrix, with 1's along the diagonals. +* `U` - upper triangular matrix. +* `P` - the permutation matrix. ### Notes: Be cautious when using this function on bigger matrices. The `L` variable is known to be incorrect. @@ -93,11 +93,11 @@ Evaluates the integral of two vectors by Simpsons 1/3 rule. Synopsis: `[I] = Simpson(x, y)` ### Input -`x` - the vector of equally spaced independent variable. -`y` - the vector of function values with respect to x. +* `x` - the vector of equally spaced independent variable. +* `y` - the vector of function values with respect to x. ### Output -`I` - numerical calculated integral. +* `I` - numerical calculated integral. ### Notes: The current state of this function is **deprecated**. The algorithm fails compute the correct trapeziodal rule given 2 data points as well as 3 data points. Thus, failing to solve real problem. Pull requests are welcomed. @@ -116,16 +116,16 @@ Function returns a special matrix A with the following criteria: Synopsis: `[root, fx, ea, iter] = falsePosition(func, xl, xu, es, maxit, varargin)`. ## Input -`func` - the function being evaluated. -`xl` - lower bound guess. -`xu` - upper bound guess. -`es` - desired relative error (default 0.0001%) -`maxit` - maximum number of iterations (default 200) -`varargin` - any additional parameters used by the function +* `func` - the function being evaluated. +* `xl` - lower bound guess. +* `xu` - upper bound guess. +* `es` - desired relative error (default 0.0001%) +* `maxit` - maximum number of iterations (default 200) +* `varargin` - any additional parameters used by the function ## Output -`A` - special matrix with the appropriate rules +* `A` - special matrix with the appropriate rules ## Notes: This function has not much of a practical application, rather a very good exercise for beginners to get started with the basics of matrix manipulation and user-defined functions. |
