summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Functions/README.md89
1 files changed, 43 insertions, 46 deletions
diff --git a/Functions/README.md b/Functions/README.md
index 8e881b3..c8805c2 100644
--- a/Functions/README.md
+++ b/Functions/README.md
@@ -1,11 +1,11 @@
# Functions
This directory contains the functions written throught the course.
-* days.m
-* falsePositive.m
-* heun.m
-* luFactor.m
-* simpson.m
-* spacialMatrix.m
+- days.m
+- falsePositive.m
+- heun.m
+- luFactor.m
+- simpson.m
+- spacialMatrix.m
---
@@ -14,12 +14,12 @@ Function to count the total days elapsed in a year according to a given date.
The syntax of the function is `days(<months>, <days>, <leap>)` where `<months>` is a integer (1-12). `<days>` is an integer from 1-31 and `<leap>` accounts for leap years.
### Input
-* `months` - month number (1-12). Example: `8` represents August.
-* `days` - day number of the month.
-* `leap` - indicates if the year is a leapyear or a regular year. `0` for regular and `1` for leap year.
+- `months` - month number (1-12). Example: `8` represents August.
+- `days` - day number of the month.
+- `leap` - indicates if the year is a leapyear or a regular year. `0` for regular and `1` for leap year.
### Output
-* `nd` - number of days elapsed in the year.
+- `nd` - number of days elapsed in the year.
### Example:
`days(8,4,0)` represents August 8th in a regular year (non-leap year).
@@ -31,18 +31,18 @@ Function finds the root of an anonymous function using the false position method
Synopsis: `[root, fx, ea, iter] = falsePosition(func, xl, xu, es, maxit, varargin)`.
### Input
-* `func` - the function being evaluated.
-* `xl` - lower bound guess.
-* `xu` - upper bound guess.
-* `es` - desired relative error (default 0.0001%)
-* `maxit` - maximum number of iterations (default 200)
-* `varargin` - any additional parameters used by the function
+- `func` - the function being evaluated.
+- `xl` - lower bound guess.
+- `xu` - upper bound guess.
+- `es` - desired relative error (default 0.0001%)
+- `maxit` - maximum number of iterations (default 200)
+- `varargin` - any additional parameters used by the function
### Output
-* `root` - estimated root location.
-* `fx` - function evaluated at root location.
-* `ea` - approximated relative error (%).
-* `iter` - number of iterations performed.
+- `root` - estimated root location.
+- `fx` - function evaluated at root location.
+- `ea` - approximated relative error (%).
+- `iter` - number of iterations performed.
### Notes:
Known issue: the output of `iter` needs fixing. The output is incorrect.
@@ -54,16 +54,16 @@ Uses the heun method to integrate an ODE.
Synopsis: `[t,y] = Heun(dydt,tspan,y0,h)`.
### Input
-* `dydt` -the differential equation of interest (must be anonymous function).
-* `tspan` - the initial and final values of the independent variable as a vector with length=2 [ti,tf].
-* `y0` - the initial value of the dependent variable.
-* `h` - step size.
-* `es` - stopping criterion (%), optional (default = 0.001).
-* `maxit` - maximum iterations of corrector, optional (default = 50).
+- `dydt` -the differential equation of interest (must be anonymous function).
+- `tspan` - the initial and final values of the independent variable as a vector with length=2 [ti,tf].
+- `y0` - the initial value of the dependent variable.
+- `h` - step size.
+- `es` - stopping criterion (%), optional (default = 0.001).
+- `maxit` - maximum iterations of corrector, optional (default = 50).
### Output
-* `t` - vector of independent variable values
-* `y` - vector of solution for dependent variable
+- `t` - vector of independent variable values
+- `y` - vector of solution for dependent variable
### Notes:
This function needs some working on to compute a correct solution when using multiple steps with an irregular step size at the end.
@@ -76,12 +76,12 @@ Performs LU decomposition with pivoting.
Synopsis: `[L, U, P] = luFactor(A)`.
### Input
-* `A` - a coefficient matrix.
+- `A` - a coefficient matrix.
### Output
-* `L` - lower triangular matrix, with 1's along the diagonals.
-* `U` - upper triangular matrix.
-* `P` - the permutation matrix.
+- `L` - lower triangular matrix, with 1's along the diagonals.
+- `U` - upper triangular matrix.
+- `P` - the permutation matrix.
### Notes:
Be cautious when using this function on bigger matrices. The `L` variable is known to be incorrect.
@@ -93,39 +93,36 @@ Evaluates the integral of two vectors by Simpsons 1/3 rule.
Synopsis: `[I] = Simpson(x, y)`
### Input
-* `x` - the vector of equally spaced independent variable.
-* `y` - the vector of function values with respect to x.
+- `x` - the vector of equally spaced independent variable.
+- `y` - the vector of function values with respect to x.
### Output
-* `I` - numerical calculated integral.
+- `I` - numerical calculated integral.
### Notes:
-The current state of this function is **deprecated**. The algorithm fails compute the correct trapeziodal rule given 2 data points as well as 3 data points. Thus, failing to solve real problem. Pull requests are welcomed.
+The current state of this function is --deprecated--. The algorithm fails compute the correct trapeziodal rule given 2 data points as well as 3 data points. Thus, failing to solve real problem. Pull requests are welcomed.
---
## [specialMatrix.m](specialMatrix.m)
-
-# specialMatrix.m
Function returns a special matrix A with the following criteria:
- The value of each element in the first row is the number of the column.
- The value of each element in the first column is the number of the row.
- The rest of the elements each has a value equal to the sum of the element above it and element to the left.
- The function returns a sensible error if the user does not input exactly two arguments.
-
Synopsis: `[root, fx, ea, iter] = falsePosition(func, xl, xu, es, maxit, varargin)`.
## Input
-* `func` - the function being evaluated.
-* `xl` - lower bound guess.
-* `xu` - upper bound guess.
-* `es` - desired relative error (default 0.0001%)
-* `maxit` - maximum number of iterations (default 200)
-* `varargin` - any additional parameters used by the function
+- `func` - the function being evaluated.
+- `xl` - lower bound guess.
+- `xu` - upper bound guess.
+- `es` - desired relative error (default 0.0001%)
+- `maxit` - maximum number of iterations (default 200)
+- `varargin` - any additional parameters used by the function
## Output
-* `A` - special matrix with the appropriate rules
+- `A` - special matrix with the appropriate rules
## Notes:
This function has not much of a practical application, rather a very good exercise for beginners to get started with the basics of matrix manipulation and user-defined functions.