From 26f9500d3fe5073788354102d157cc5e7978c740 Mon Sep 17 00:00:00 2001 From: Christian Kolset Date: Sat, 21 Dec 2024 20:11:19 +0100 Subject: Renamed and re-organized files in Scripts/ directory --- Scripts/hw11.m | 29 +++++++++++++++++++++++++++++ 1 file changed, 29 insertions(+) create mode 100644 Scripts/hw11.m (limited to 'Scripts/hw11.m') diff --git a/Scripts/hw11.m b/Scripts/hw11.m new file mode 100644 index 0000000..312e816 --- /dev/null +++ b/Scripts/hw11.m @@ -0,0 +1,29 @@ +% Define problem constants +g = 9.81; +mu = 0.55; +F = 150; +m = 25; + +% Define the function to be solved for. Is the angle specified in radians or degrees? +%angle=@(-asin(g/(sqrt(mu^2)))+atand(mu)+((4*n2+1)*pi)/2 +func=@(angle) mu*m*g/(cosd(angle)+mu*sind(angle))-F; + +% THINK, what makes range sense for angle? +lower_bound=-90; +upper_bound=90; + +% Plot your function. Does plotting give you an idea about where the root is? +hold on +fplot(func) +fplot(0) + +% Finaly solve for the root using the bisection script given to you, which can be called as: +%[root, fx, ea, iter] = bisect(func, lower_bound, upper_bound); + +angle = bisect(func,lower_bound, upper_bound) + +% These variables will be checked for your final answer: +%angle = % the angle in degree that solves this problem +fx = func(angle) % the function value at your solved angle +ea = ea % the bisection error estimate +iter = iter % the number of bisection iterations \ No newline at end of file -- cgit v1.2.3