diff options
| author | Christian Kolset <christian.kolset@gmail.com> | 2025-09-25 17:17:24 -0600 |
|---|---|---|
| committer | Christian Kolset <christian.kolset@gmail.com> | 2025-09-25 17:17:24 -0600 |
| commit | 8e3b2db9e01123eba9cb2c6199394ee85ff2cd96 (patch) | |
| tree | 3c3e10366d1473e198a87a7b5489755d4801c7db | |
| parent | 65bccf39525578eb0c763c3dd8ec4e4c9f9a7306 (diff) | |
Made progress on both PDE examples and system of non-linear equations examples
| -rw-r--r-- | tutorials/module_3/1_linear_equations.md (renamed from tutorials/module_3/3_system_of_equations.md) | 0 | ||||
| -rw-r--r-- | tutorials/module_3/2_roots_optimization.md | 1 | ||||
| -rw-r--r-- | tutorials/module_3/6_pde.md | 71 |
3 files changed, 63 insertions, 9 deletions
diff --git a/tutorials/module_3/3_system_of_equations.md b/tutorials/module_3/1_linear_equations.md index 9f50b97..9f50b97 100644 --- a/tutorials/module_3/3_system_of_equations.md +++ b/tutorials/module_3/1_linear_equations.md diff --git a/tutorials/module_3/2_roots_optimization.md b/tutorials/module_3/2_roots_optimization.md index ee8f8c6..a91a464 100644 --- a/tutorials/module_3/2_roots_optimization.md +++ b/tutorials/module_3/2_roots_optimization.md @@ -236,4 +236,3 @@ Numerical methods for Engineers 7th Edition Case study 8.4. # Systems of Non-linear equations - diff --git a/tutorials/module_3/6_pde.md b/tutorials/module_3/6_pde.md index 95d63c4..2980fa7 100644 --- a/tutorials/module_3/6_pde.md +++ b/tutorials/module_3/6_pde.md @@ -33,7 +33,7 @@ $$ Finite-different solutions - Laplacian Difference equations in dimension $x$ and $y$: $$ -\frac{\partial^2T}{\partial x^2}= \frac{T_{i+1,j}-2T_{i,j}+T_{i-1,j}}{\Delta x^2} +\boxed{\frac{\partial^2T}{\partial x^2}= \frac{T_{i+1,j}-2T_{i,j}+T_{i-1,j}}{\Delta x^2}} $$ $$ \frac{\partial^2T}{\partial y^2}= \frac{T_{i+1,j}-2T_{i,j}+T_{i-1,j}}{\Delta y^2} @@ -64,9 +64,13 @@ $$ Explicit methods -Forward-time central-space +Forward-time central-space (FTCS Scheme) based on forward euler method and central difference in space. - + +One dimensional Heat conduction example + We need to measure the insulation of a wall and measure the change of temperature through the + + Simple Implicit methods Crank-Nicolson ADI @@ -107,9 +111,10 @@ General Approach 3. Assembly 4. Boundary Conditions 5. Solutions -6. Postprocessing +6. Post-processing ### One-dimensional analysis + ### Two-dimensional Analysis @@ -128,18 +133,68 @@ General Approach -# Problem 1: Finite-Element Solution of a Series of Springs +## Problem 1: Finite-Element Solution of a Series of Springs Problem 32.4 from Numerical Methods for Engineers 7th Edition Steven C. Chapra and Raymond P. Canale A series of interconnected strings are connected to a fixed wall where the other is subject to a constant force F. Using the step-by-step procedure from above, determine the displacement of the springs. +Solution: +Setup: Let's partition the system to treat each spring as an element. Thus, the system consists for 4 elements and 5 nodes. +<img + style="display: block; + margin-left: auto; + margin-right: auto; + width: 50%;" + src="example32-4.png" + alt="Diagram of system of springs example"> +Element Equations: Analyzing element 1 we get the following free body diagram: +<img + style="display: block; + margin-left: auto; + margin-right: auto; + width: 50%;" + src="example32-4element1.png" + alt="Diagram of element 1"> - - - +Applying Hook's law to the element we get: +$$ +F=kx +$$ +$$ +F=k(x_1-x_2) +$$ +where $(x_1-x_2)$ is how much the first spring is stretched out. +Re-writing this equation: +$$ +F_1 = kx_1 - kx_2 +$$ +$$ +F_2=-kx_1+kx_2 +$$ +$$ +\begin{bmatrix} k & -k \\ -k & k \end{bmatrix} +\begin{Bmatrix} x_{1} \\ +x_{2} \end{Bmatrix} += +\begin{Bmatrix} F_{1} \\ F_{2} \end{Bmatrix} +$$ +$$ +[k]\{x\}=\{F\} +$$ +where $[k]$ is the element property matrix or in this case element stiffness matrix. $x$ is a column vector of unknowns (in this case position of each) and $F$ is a vector column with external influence applied at the nodes. +Assembly: Once individual element equations are derived we will link them together using assembly. +$$ +[k]\{x'\}=\{F'\} +$$ +where $[k]$ is the assemblage property matrix and $\{u'\}$ and $\{F'\}$ column vectors are unknowns and external forces that are marked with primes to denote that they are an assemblage of the vectors $\{u\}$ and $\{F\}$. +$$ +\begin{bmatrix} k & -k \\ -k & k \end{bmatrix} +\begin{Bmatrix} x_{1} \\ x_2 \end{Bmatrix} +$$ ## Problem 2: Finite Solve the non-dimensional transient heat conduction equation in two dimensions, which represents the transient temperature distribution in an insulated plate +---
\ No newline at end of file |
