summaryrefslogtreecommitdiff
path: root/tutorials/module_3/4_numerical_integration.md
diff options
context:
space:
mode:
authorChristian Kolset <christian.kolset@gmail.com>2025-09-22 00:44:12 -0600
committerChristian Kolset <christian.kolset@gmail.com>2025-09-22 00:44:12 -0600
commit0c90b794fa3c11d5ca20722369080a52070ffaad (patch)
tree5c306d2ecfeaa6475d276a48d2072c3983fcf29e /tutorials/module_3/4_numerical_integration.md
parentab2b98a153216af10fa71f909a346bcc83533551 (diff)
Finished off system_of_equations and pde's
Diffstat (limited to 'tutorials/module_3/4_numerical_integration.md')
-rw-r--r--tutorials/module_3/4_numerical_integration.md5
1 files changed, 2 insertions, 3 deletions
diff --git a/tutorials/module_3/4_numerical_integration.md b/tutorials/module_3/4_numerical_integration.md
index 78b0328..06cb8b9 100644
--- a/tutorials/module_3/4_numerical_integration.md
+++ b/tutorials/module_3/4_numerical_integration.md
@@ -183,9 +183,6 @@ for n in n_list:
```python
-#!/usr/bin/env python3
-# Gauss Quadrature using Gauss-Legendre method (manual 2-point & 3-point)
-
import numpy as np
from scipy.integrate import quad # for reference "exact" integral
@@ -244,6 +241,7 @@ print(f"Error (3-point): {err3:.2e}")
## Numerical Integration to Compute Work
+
## Implementing the Composite Trapezoidal Rule
**Objective:** Implement a Python function to approximate integrals using the trapezoidal rule.
@@ -266,6 +264,7 @@ for n in [4, 8, 16, 32]:
Students should compare results for increasing $n$ and observe how the error decreases with $O(h^2$).
+---
## Gaussian Quadrature
Write a Python function for two-point and three-point Gauss–Legendre quadrature over an arbitrary interval $[a,b]$. Verify exactness for polynomials up to the appropriate degree and compare performance against the trapezoidal rule on oscillatory test functions.