summaryrefslogtreecommitdiff
path: root/tutorials/module_4/3_linear_regression.md
diff options
context:
space:
mode:
authorChristian Kolset <christian.kolset@gmail.com>2025-08-29 12:41:42 -0600
committerChristian Kolset <christian.kolset@gmail.com>2025-08-29 12:41:42 -0600
commit29870f542da6f1ec4dd028a4255143b638f48ba8 (patch)
treed9d904adcbc9c43f14c73102d126aab0ca1a6c70 /tutorials/module_4/3_linear_regression.md
parent187d17f16c90a4e2dfc49e280445e027b53ec86c (diff)
Updated canvas to actually refer to the notes in the vault.
This results in the label creation at the top header to reference when showing the block.
Diffstat (limited to 'tutorials/module_4/3_linear_regression.md')
-rw-r--r--tutorials/module_4/3_linear_regression.md24
1 files changed, 24 insertions, 0 deletions
diff --git a/tutorials/module_4/3_linear_regression.md b/tutorials/module_4/3_linear_regression.md
new file mode 100644
index 0000000..298d411
--- /dev/null
+++ b/tutorials/module_4/3_linear_regression.md
@@ -0,0 +1,24 @@
+# Linear Regression
+
+^aab594
+
+
+
+## Statical tools
+Numpy comes with some useful statistical tools that we can use to analyze our data.
+
+### Mean
+The mean is the average of a set of numbers. It is calculated by summing all the numbers and dividing by the count of numbers.
+
+```python
+import numpy as np
+
+mean = np.mean([1, 2, 3, 4, 5])
+median = np.median([1, 2, 3, 4, 5])
+std = np.std([1, 2, 3, 4, 5])
+variance = np.var([1, 2, 3, 4, 5])
+```
+
+
+
+###