diff options
| author | Christian Kolset <christian.kolset@gmail.com> | 2025-08-29 12:41:42 -0600 |
|---|---|---|
| committer | Christian Kolset <christian.kolset@gmail.com> | 2025-08-29 12:41:42 -0600 |
| commit | 29870f542da6f1ec4dd028a4255143b638f48ba8 (patch) | |
| tree | d9d904adcbc9c43f14c73102d126aab0ca1a6c70 /tutorials/module_4/linear_regression.md | |
| parent | 187d17f16c90a4e2dfc49e280445e027b53ec86c (diff) | |
Updated canvas to actually refer to the notes in the vault.
This results in the label creation at the top header to reference when showing the block.
Diffstat (limited to 'tutorials/module_4/linear_regression.md')
| -rw-r--r-- | tutorials/module_4/linear_regression.md | 18 |
1 files changed, 0 insertions, 18 deletions
diff --git a/tutorials/module_4/linear_regression.md b/tutorials/module_4/linear_regression.md deleted file mode 100644 index b21415b..0000000 --- a/tutorials/module_4/linear_regression.md +++ /dev/null @@ -1,18 +0,0 @@ -# Linear Regression - - - -## Statical tools -Numpy comes with some useful statistical tools that we can use to analyze our data. - -### Mean -The mean is the average of a set of numbers. It is calculated by summing all the numbers and dividing by the count of numbers. - -```python -import numpy as np - -mean = np.mean([1, 2, 3, 4, 5]) -median = np.median([1, 2, 3, 4, 5]) -std = np.std([1, 2, 3, 4, 5]) -variance = np.var([1, 2, 3, 4, 5]) -``` |
