diff options
Diffstat (limited to 'book/module1/1_excel_to_python.tex')
| -rw-r--r-- | book/module1/1_excel_to_python.tex | 119 |
1 files changed, 0 insertions, 119 deletions
diff --git a/book/module1/1_excel_to_python.tex b/book/module1/1_excel_to_python.tex deleted file mode 100644 index 300c951..0000000 --- a/book/module1/1_excel_to_python.tex +++ /dev/null @@ -1,119 +0,0 @@ -\section{Excel to Python}\label{excel-to-python} - -\begin{itemize} -\tightlist -\item - Importing -\item - Plotting -\item - Statistical analysis -\end{itemize} - -\subsection{\texorpdfstring{\textbf{How Excel Translates to -Python}}{How Excel Translates to Python}}\label{how-excel-translates-to-python} - -Here's how common Excel functionalities map to Python: - -\begin{longtable}[]{@{} - >{\raggedright\arraybackslash}p{(\columnwidth - 2\tabcolsep) * \real{0.2911}} - >{\raggedright\arraybackslash}p{(\columnwidth - 2\tabcolsep) * \real{0.7089}}@{}} -\toprule\noalign{} -\begin{minipage}[b]{\linewidth}\raggedright -\textbf{Excel Feature} -\end{minipage} & \begin{minipage}[b]{\linewidth}\raggedright -\textbf{Python Equivalent} -\end{minipage} \\ -\midrule\noalign{} -\endhead -\bottomrule\noalign{} -\endlastfoot -Formulas (SUM, AVERAGE) & \texttt{numpy}, \texttt{pandas} -(\texttt{df.sum()}, \texttt{df.mean()}) \\ -Sorting \& Filtering & \texttt{pandas.sort\_values()}, -\texttt{df{[}df{[}\textquotesingle{}col\textquotesingle{}{]}\ \textgreater{}\ value{]}} \\ -Conditional Formatting & \texttt{matplotlib} for highlighting \\ -Pivot Tables & \texttt{pandas.pivot\_table()} \\ -Charts \& Graphs & \texttt{matplotlib}, \texttt{seaborn}, -\texttt{plotly} \\ -Regression Analysis & \texttt{scipy.stats.linregress}, -\texttt{sklearn.linear\_model} \\ -Solver/Optimization & \texttt{scipy.optimize} \\ -VBA Macros & Python scripting with \texttt{openpyxl}, \texttt{pandas}, -or \texttt{xlwings} \\ -\end{longtable} - -\subsection{Statistical functions}\label{statistical-functions} - -\paragraph{SUM}\label{sum} - -Built-in: - -\begin{Shaded} -\begin{Highlighting}[] -\NormalTok{my\_array }\OperatorTok{=}\NormalTok{ [}\DecValTok{1}\NormalTok{, }\DecValTok{2}\NormalTok{, }\DecValTok{3}\NormalTok{, }\DecValTok{4}\NormalTok{, }\DecValTok{5}\NormalTok{]} -\NormalTok{total }\OperatorTok{=} \BuiltInTok{sum}\NormalTok{(my\_array)} -\BuiltInTok{print}\NormalTok{(total) }\CommentTok{\# Output: 15} -\end{Highlighting} -\end{Shaded} - -Numpy: - -\begin{Shaded} -\begin{Highlighting}[] -\ImportTok{import}\NormalTok{ numpy }\ImportTok{as}\NormalTok{ np} - -\NormalTok{my\_array }\OperatorTok{=}\NormalTok{ np.array([}\DecValTok{1}\NormalTok{, }\DecValTok{2}\NormalTok{, }\DecValTok{3}\NormalTok{, }\DecValTok{4}\NormalTok{, }\DecValTok{5}\NormalTok{])} -\NormalTok{total }\OperatorTok{=}\NormalTok{ np.}\BuiltInTok{sum}\NormalTok{(my\_array)} -\BuiltInTok{print}\NormalTok{(total) }\CommentTok{\# Output: 15} -\end{Highlighting} -\end{Shaded} - -\subsubsection{Average}\label{average} - -Built-in: - -\begin{Shaded} -\begin{Highlighting}[] -\NormalTok{my\_array }\OperatorTok{=}\NormalTok{ [}\DecValTok{1}\NormalTok{, }\DecValTok{2}\NormalTok{, }\DecValTok{3}\NormalTok{, }\DecValTok{4}\NormalTok{, }\DecValTok{5}\NormalTok{]} -\NormalTok{average }\OperatorTok{=} \BuiltInTok{sum}\NormalTok{(my\_array) }\OperatorTok{/} \BuiltInTok{len}\NormalTok{(my\_array)} -\BuiltInTok{print}\NormalTok{(average) }\CommentTok{\# Output: 3.0} -\end{Highlighting} -\end{Shaded} - -Numpy: - -\begin{Shaded} -\begin{Highlighting}[] -\ImportTok{import}\NormalTok{ numpy }\ImportTok{as}\NormalTok{ np} - -\NormalTok{my\_array }\OperatorTok{=}\NormalTok{ np.array([}\DecValTok{1}\NormalTok{, }\DecValTok{2}\NormalTok{, }\DecValTok{3}\NormalTok{, }\DecValTok{4}\NormalTok{, }\DecValTok{5}\NormalTok{])} -\NormalTok{average }\OperatorTok{=}\NormalTok{ np.mean(my\_array)} -\BuiltInTok{print}\NormalTok{(average) }\CommentTok{\# Output: 3.0} -\end{Highlighting} -\end{Shaded} - -\subsection{Plotting}\label{plotting} - -We can use the package \emph{matplotlib} to plot our graphs in python. -Matplotlib provides data visualization tools for the Scientific Python -Ecosystem. You can make very professional looking figures with this -tool. - -Here is a section from the matplotlib documentation page that you can -run in python. - -\begin{Shaded} -\begin{Highlighting}[] -\ImportTok{import}\NormalTok{ matplotlib.pyplot }\ImportTok{as}\NormalTok{ plt} - -\NormalTok{fig, ax }\OperatorTok{=}\NormalTok{ plt.subplots() }\CommentTok{\# Create a figure containing a single Axes.} -\NormalTok{ax.plot([}\DecValTok{1}\NormalTok{, }\DecValTok{2}\NormalTok{, }\DecValTok{3}\NormalTok{, }\DecValTok{4}\NormalTok{], [}\DecValTok{1}\NormalTok{, }\DecValTok{4}\NormalTok{, }\DecValTok{2}\NormalTok{, }\DecValTok{3}\NormalTok{]) }\CommentTok{\# Plot some data on the Axes.} -\NormalTok{plt.show() }\CommentTok{\# Show the figure.} -\end{Highlighting} -\end{Shaded} - -Check out the documentation pages for a -\href{https://matplotlib.org/stable/users/explain/quick_start.html\#a-simple-example}{simple -example} or more information on the types of plots you came create -\href{https://matplotlib.org/stable/plot_types/index.html}{here}. |
