summaryrefslogtreecommitdiff
path: root/tutorials/module_1/notebook_1/1_excel_to_python.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'tutorials/module_1/notebook_1/1_excel_to_python.ipynb')
-rw-r--r--tutorials/module_1/notebook_1/1_excel_to_python.ipynb99
1 files changed, 0 insertions, 99 deletions
diff --git a/tutorials/module_1/notebook_1/1_excel_to_python.ipynb b/tutorials/module_1/notebook_1/1_excel_to_python.ipynb
deleted file mode 100644
index 98d8a02..0000000
--- a/tutorials/module_1/notebook_1/1_excel_to_python.ipynb
+++ /dev/null
@@ -1,99 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Excel to Python\n",
- "\n",
- "- Importing\n",
- "- Plotting\n",
- "- Statistical analysis\n",
- "\n",
- "## **How Excel Translates to Python**\n",
- "\n",
- "Here’s how common Excel functionalities map to Python:\n",
- "\n",
- "| **Excel Feature** | **Python Equivalent** |\n",
- "|----------------------|--------------------------------------------------|\n",
- "| Formulas (SUM, AVERAGE) | `numpy`, `pandas` (`df.sum()`, `df.mean()`) |\n",
- "| Sorting & Filtering | `pandas.sort_values()`, `df[df['col'] > value]` |\n",
- "| Conditional Formatting | `matplotlib` for highlighting |\n",
- "| Pivot Tables | `pandas.pivot_table()` |\n",
- "| Charts & Graphs | `matplotlib`, `seaborn`, `plotly` |\n",
- "| Regression Analysis | `scipy.stats.linregress`, `sklearn.linear_model` |\n",
- "| Solver/Optimization | `scipy.optimize` |\n",
- "| VBA Macros | Python scripting with `openpyxl`, `pandas`, or `xlwings` |\n",
- "\n",
- "## Statistical functions\n",
- "\n",
- "#### SUM\n",
- "\n",
- "Built-in:\n",
- "\n",
- "``` python\n",
- "my_array = [1, 2, 3, 4, 5]\n",
- "total = sum(my_array)\n",
- "print(total) # Output: 15\n",
- "```\n",
- "\n",
- "Numpy:\n",
- "\n",
- "``` python\n",
- "import numpy as np\n",
- "\n",
- "my_array = np.array([1, 2, 3, 4, 5])\n",
- "total = np.sum(my_array)\n",
- "print(total) # Output: 15\n",
- "```\n",
- "\n",
- "### Average\n",
- "\n",
- "Built-in:\n",
- "\n",
- "``` python\n",
- "my_array = [1, 2, 3, 4, 5]\n",
- "average = sum(my_array) / len(my_array)\n",
- "print(average) # Output: 3.0\n",
- "```\n",
- "\n",
- "Numpy:\n",
- "\n",
- "``` python\n",
- "import numpy as np\n",
- "\n",
- "my_array = np.array([1, 2, 3, 4, 5])\n",
- "average = np.mean(my_array)\n",
- "print(average) # Output: 3.0\n",
- "```\n",
- "\n",
- "## Plotting\n",
- "\n",
- "We can use the package *matplotlib* to plot our graphs in python.\n",
- "Matplotlib provides data visualization tools for the Scientific Python\n",
- "Ecosystem. You can make very professional looking figures with this\n",
- "tool.\n",
- "\n",
- "Here is a section from the matplotlib documentation page that you can\n",
- "run in python.\n",
- "\n",
- "``` python\n",
- "import matplotlib.pyplot as plt\n",
- "\n",
- "fig, ax = plt.subplots() # Create a figure containing a single Axes.\n",
- "ax.plot([1, 2, 3, 4], [1, 4, 2, 3]) # Plot some data on the Axes.\n",
- "plt.show() # Show the figure.\n",
- "```\n",
- "\n",
- "Check out the documentation pages for a [simple\n",
- "example](https://matplotlib.org/stable/users/explain/quick_start.html#a-simple-example)\n",
- "or more information on the types of plots you came create\n",
- "[here](https://matplotlib.org/stable/plot_types/index.html)."
- ],
- "id": "3e04cd8a-c731-494a-bf4f-dfe745a8a487"
- }
- ],
- "nbformat": 4,
- "nbformat_minor": 5,
- "metadata": {}
-}