diff options
Diffstat (limited to 'tutorials/module_1/notebook_1/1_excel_to_python.ipynb')
| -rw-r--r-- | tutorials/module_1/notebook_1/1_excel_to_python.ipynb | 99 |
1 files changed, 0 insertions, 99 deletions
diff --git a/tutorials/module_1/notebook_1/1_excel_to_python.ipynb b/tutorials/module_1/notebook_1/1_excel_to_python.ipynb deleted file mode 100644 index 98d8a02..0000000 --- a/tutorials/module_1/notebook_1/1_excel_to_python.ipynb +++ /dev/null @@ -1,99 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Excel to Python\n", - "\n", - "- Importing\n", - "- Plotting\n", - "- Statistical analysis\n", - "\n", - "## **How Excel Translates to Python**\n", - "\n", - "Here’s how common Excel functionalities map to Python:\n", - "\n", - "| **Excel Feature** | **Python Equivalent** |\n", - "|----------------------|--------------------------------------------------|\n", - "| Formulas (SUM, AVERAGE) | `numpy`, `pandas` (`df.sum()`, `df.mean()`) |\n", - "| Sorting & Filtering | `pandas.sort_values()`, `df[df['col'] > value]` |\n", - "| Conditional Formatting | `matplotlib` for highlighting |\n", - "| Pivot Tables | `pandas.pivot_table()` |\n", - "| Charts & Graphs | `matplotlib`, `seaborn`, `plotly` |\n", - "| Regression Analysis | `scipy.stats.linregress`, `sklearn.linear_model` |\n", - "| Solver/Optimization | `scipy.optimize` |\n", - "| VBA Macros | Python scripting with `openpyxl`, `pandas`, or `xlwings` |\n", - "\n", - "## Statistical functions\n", - "\n", - "#### SUM\n", - "\n", - "Built-in:\n", - "\n", - "``` python\n", - "my_array = [1, 2, 3, 4, 5]\n", - "total = sum(my_array)\n", - "print(total) # Output: 15\n", - "```\n", - "\n", - "Numpy:\n", - "\n", - "``` python\n", - "import numpy as np\n", - "\n", - "my_array = np.array([1, 2, 3, 4, 5])\n", - "total = np.sum(my_array)\n", - "print(total) # Output: 15\n", - "```\n", - "\n", - "### Average\n", - "\n", - "Built-in:\n", - "\n", - "``` python\n", - "my_array = [1, 2, 3, 4, 5]\n", - "average = sum(my_array) / len(my_array)\n", - "print(average) # Output: 3.0\n", - "```\n", - "\n", - "Numpy:\n", - "\n", - "``` python\n", - "import numpy as np\n", - "\n", - "my_array = np.array([1, 2, 3, 4, 5])\n", - "average = np.mean(my_array)\n", - "print(average) # Output: 3.0\n", - "```\n", - "\n", - "## Plotting\n", - "\n", - "We can use the package *matplotlib* to plot our graphs in python.\n", - "Matplotlib provides data visualization tools for the Scientific Python\n", - "Ecosystem. You can make very professional looking figures with this\n", - "tool.\n", - "\n", - "Here is a section from the matplotlib documentation page that you can\n", - "run in python.\n", - "\n", - "``` python\n", - "import matplotlib.pyplot as plt\n", - "\n", - "fig, ax = plt.subplots() # Create a figure containing a single Axes.\n", - "ax.plot([1, 2, 3, 4], [1, 4, 2, 3]) # Plot some data on the Axes.\n", - "plt.show() # Show the figure.\n", - "```\n", - "\n", - "Check out the documentation pages for a [simple\n", - "example](https://matplotlib.org/stable/users/explain/quick_start.html#a-simple-example)\n", - "or more information on the types of plots you came create\n", - "[here](https://matplotlib.org/stable/plot_types/index.html)." - ], - "id": "3e04cd8a-c731-494a-bf4f-dfe745a8a487" - } - ], - "nbformat": 4, - "nbformat_minor": 5, - "metadata": {} -} |
