summaryrefslogtreecommitdiff
path: root/tutorials/module_2/notebook_2/num_methods_1.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'tutorials/module_2/notebook_2/num_methods_1.ipynb')
-rw-r--r--tutorials/module_2/notebook_2/num_methods_1.ipynb132
1 files changed, 132 insertions, 0 deletions
diff --git a/tutorials/module_2/notebook_2/num_methods_1.ipynb b/tutorials/module_2/notebook_2/num_methods_1.ipynb
new file mode 100644
index 0000000..889014a
--- /dev/null
+++ b/tutorials/module_2/notebook_2/num_methods_1.ipynb
@@ -0,0 +1,132 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Solving non-linear equations\n",
+ "\n",
+ "^ca27a3\n",
+ "\n",
+ "## Introduction\n",
+ "\n",
+ "## Prerequisites\n",
+ "\n",
+ "``` python\n",
+ "import numpy\n",
+ "import scipy\n",
+ "import sympy\n",
+ "```\n",
+ "\n",
+ "## fsolve from SciPy\n",
+ "\n",
+ "``` python\n",
+ "from scipy.optimize import fsolve\n",
+ "\n",
+ "def equations(vars):\n",
+ " x, y = vars\n",
+ " eq1 = x**2 + y**2 - 25\n",
+ " eq2 = x**2 - y\n",
+ " return [eq1, eq2]\n",
+ "\n",
+ "initial_guess = [1, 1]\n",
+ "solution = fsolve(equations, initial_guess)\n",
+ "print(\"Solution:\", solution)\n",
+ "```\n",
+ "\n",
+ "## root from SciPy\n",
+ "\n",
+ "``` python\n",
+ "from scipy.optimize import root\n",
+ "\n",
+ "def equations(vars):\n",
+ " x, y = vars\n",
+ " eq1 = x**2 + y**2 - 25\n",
+ " eq2 = x**2 - y\n",
+ " return [eq1, eq2]\n",
+ "\n",
+ "initial_guess = [1, 1]\n",
+ "solution = root(equations, initial_guess)\n",
+ "print(\"Solution:\", solution.x)\n",
+ "```\n",
+ "\n",
+ "## minimize from SciPy\n",
+ "\n",
+ "``` python\n",
+ "from scipy.optimize import minimize\n",
+ "\n",
+ "# Define the equations\n",
+ "def equation1(x, y):\n",
+ " return x**2 + y**2 - 25\n",
+ "\n",
+ "def equation2(x, y):\n",
+ " return x**2 - y\n",
+ "\n",
+ "# Define the objective function for optimization\n",
+ "def objective(xy):\n",
+ " x, y = xy\n",
+ " return equation1(x, y)**2 + equation2(x, y)**2\n",
+ "\n",
+ "# Initial guess\n",
+ "initial_guess = [1, 1]\n",
+ "\n",
+ "# Perform optimization\n",
+ "result = minimize(objective, initial_guess)\n",
+ "solution_optimization = result.x\n",
+ "\n",
+ "print(\"Optimization Method Solution:\", solution_optimization)\n",
+ "```\n",
+ "\n",
+ "## nsolve from SymPy\n",
+ "\n",
+ "``` python\n",
+ "from sympy import symbols, Eq, nsolve\n",
+ "\n",
+ "# Define the variables\n",
+ "x, y = symbols('x y')\n",
+ "\n",
+ "# Define the equations\n",
+ "eq1 = Eq(x**2 + y**2, 25)\n",
+ "eq2 = Eq(x - y, 0)\n",
+ "\n",
+ "# Initial guess for the solution\n",
+ "initial_guess = [1, 1]\n",
+ "\n",
+ "# Use nsolve to find the solution\n",
+ "solution = nsolve([eq1, eq2], [x, y], initial_guess)\n",
+ "print(\"Solution:\", solution)\n",
+ "```\n",
+ "\n",
+ "## newton_method from NumPy\n",
+ "\n",
+ "``` python\n",
+ "import numpy as np\n",
+ "\n",
+ "def equations(vars):\n",
+ " x, y = vars\n",
+ " eq1 = x**2 + y**2 - 25\n",
+ " eq2 = x**2 - y\n",
+ " return np.array([eq1, eq2])\n",
+ "\n",
+ "def newton_method(initial_guess, tolerance=1e-6, max_iter=100):\n",
+ " vars = np.array(initial_guess, dtype=float)\n",
+ " for _ in range(max_iter):\n",
+ " J = np.array([[2 * vars[0], 2 * vars[1]], [2 * vars[0], -1]])\n",
+ " F = equations(vars)\n",
+ " delta = np.linalg.solve(J, -F)\n",
+ " vars += delta\n",
+ " if np.linalg.norm(delta) < tolerance:\n",
+ " return vars\n",
+ "\n",
+ "initial_guess = [1, 1]\n",
+ "solution = newton_method(initial_guess)\n",
+ "print(\"Solution:\", solution)\n",
+ "```"
+ ],
+ "id": "2ba3c111-8a56-4d09-b043-cdd8c5528e00"
+ }
+ ],
+ "nbformat": 4,
+ "nbformat_minor": 5,
+ "metadata": {}
+}