summaryrefslogtreecommitdiff
path: root/tutorials/module_4/4.3 Importing and Managing Data.md
diff options
context:
space:
mode:
Diffstat (limited to 'tutorials/module_4/4.3 Importing and Managing Data.md')
-rw-r--r--tutorials/module_4/4.3 Importing and Managing Data.md11
1 files changed, 9 insertions, 2 deletions
diff --git a/tutorials/module_4/4.3 Importing and Managing Data.md b/tutorials/module_4/4.3 Importing and Managing Data.md
index cd66164..91411c6 100644
--- a/tutorials/module_4/4.3 Importing and Managing Data.md
+++ b/tutorials/module_4/4.3 Importing and Managing Data.md
@@ -86,11 +86,17 @@ df.to_csv("edited_experiment.csv", index=False)
This workflow makes pandas ideal for working with tabular data, you can quickly edit or generate datasets, verify values, and save clean, structured files for later visualization or analysis.
-### Problem 2: Import time stamped data
+### Problem: Import time stamped data
-### Further Docs
+
+
+
+
+
+
+# Further Docs
[Comparison with Spreadsheets](https://pandas.pydata.org/docs/getting_started/comparison/comparison_with_spreadsheets.html#compare-with-spreadsheets)
[Intro to Reading/Writing Files](https://pandas.pydata.org/docs/getting_started/intro_tutorials/02_read_write.html)
[Subsetting Data](https://pandas.pydata.org/docs/getting_started/intro_tutorials/03_subset_data.html)
@@ -98,3 +104,4 @@ This workflow makes pandas ideal for working with tabular data, you can quickly
[Reshaping Data](https://pandas.pydata.org/docs/user_guide/reshaping.html)
[Merging DataFrames](https://pandas.pydata.org/docs/user_guide/merging.html)
[Combining DataFrames](https://pandas.pydata.org/docs/getting_started/intro_tutorials/08_combine_dataframes.html)
+