summaryrefslogtreecommitdiff
path: root/tutorials/module_4/4.3 Importing and Managing Data.md
diff options
context:
space:
mode:
Diffstat (limited to 'tutorials/module_4/4.3 Importing and Managing Data.md')
-rw-r--r--tutorials/module_4/4.3 Importing and Managing Data.md42
1 files changed, 0 insertions, 42 deletions
diff --git a/tutorials/module_4/4.3 Importing and Managing Data.md b/tutorials/module_4/4.3 Importing and Managing Data.md
index 101d5ab..ef44a7a 100644
--- a/tutorials/module_4/4.3 Importing and Managing Data.md
+++ b/tutorials/module_4/4.3 Importing and Managing Data.md
@@ -85,48 +85,6 @@ df.to_csv("edited_experiment.csv", index=False)
This workflow makes pandas ideal for working with tabular data, you can quickly edit or generate datasets, verify values, and save clean, structured files for later visualization or analysis.
-## Subsetting and Conditional filtering
-You can select rows, columns, or specific conditions from a DataFrame.
-
-```python
-# Select a column
-force = df["Force_N"]
-
-# Select multiple columns
-subset = df[["Time_s", "Force_N"]]
-
-# Conditional filtering
-df_high_force = df[df["Force_N"] > 50]
-```
-
-
-![[Pasted image 20251013064718.png]]
-
-## Combining and Merging Datasets
-Often, multiple sensors or experiments must be merged into one dataset for analysis.
-
-```python
-# Merge on a common column (e.g., time)
-merged = pd.merge(df_force, df_temp, on="Time_s")
-
-# Stack multiple test runs vertically
-combined = pd.concat([df_run1, df_run2], axis=0)
-```
-
-
-## Problem 1: Describe a dataset
-Use pandas built-in describe data to report on the statistical mean of the given experimental data.
-
-```python
-import matplotlib.pyplot as plt
-
-plt.plot(df["Time_s"], df["Force_N"])
-plt.xlabel("Time (s)")
-plt.ylabel("Force (N)")
-plt.title("Force vs. Time")
-plt.show()
-```
-
### Problem 2: Import time stamped data