summaryrefslogtreecommitdiff
path: root/tutorials/module_4/4.7 Data Visualization and Presentation.md
diff options
context:
space:
mode:
Diffstat (limited to 'tutorials/module_4/4.7 Data Visualization and Presentation.md')
-rw-r--r--tutorials/module_4/4.7 Data Visualization and Presentation.md74
1 files changed, 63 insertions, 11 deletions
diff --git a/tutorials/module_4/4.7 Data Visualization and Presentation.md b/tutorials/module_4/4.7 Data Visualization and Presentation.md
index ea3fe1a..f97721b 100644
--- a/tutorials/module_4/4.7 Data Visualization and Presentation.md
+++ b/tutorials/module_4/4.7 Data Visualization and Presentation.md
@@ -1,20 +1,72 @@
-#data #visualization #
+#data #visualization
# Data Visualization and Presentation
-**Learning objectives:**
+## How to represent data scientifically
-- Create scientific plots using `matplotlib.pyplot`
-- Customize figures (labels, legends, styles, subplots)
-- Plot multi-dimensional and time-series data
-- Combine plots and export for reports
----
+Remember PCC:
+1. Purpose
+2. Composition
+3. Color
-**Extensions:**
+## Plotting with Matplotlib
+### Simple plot
+You've probably seen the `matplotlib` package being imported at the top of the scripts. Matplotlib allows us to create static, animated and interactive visualizations in Python. It can even create publication quality plots.
-- Intro to `seaborn` for statistical visualization
-- Plotting uncertainty and error bars
+Initialize
+```python
+import numpy as np
+import matplotlib.pyplot as plt
+```
+Prepare data
+```python
+x = np.linspace(0,10*np.pi,1000)
+y = np.sin(x)
+```
+Render
+```python
+fig, ax = plt.subplots()
+ax.plot(X,Y)
+plt.show()
+```
+### Customizing plots
+subplots, twin axis, labels, annotations
+Colormaps and figure aesthetics.
-## How to represent data scientifically
+
+
+
+### Other types of plots
+- `scatter`
+- `bar`
+- `imshow`
+- `contourf`
+- `pie`
+- `hist`
+- `errorbar`
+- `boxplot`
+
+## Plotting different types of data
+
+
+
+## Plotting for reports and publication quality graphs
+Now that you've
+
+
+### Saving figures
+save formats
+ figure size
+ bitmap vs vector format
+
+
+
+
+## Problem:
+Using pandas to plot spectroscopy data from raw data
+
+
+## Problem:
+Create a muli-panel figure showing raw data, fitted curve and residuals. Format with consistent style, legend, and color scheme for publication-ready quality. \ No newline at end of file