summaryrefslogtreecommitdiff
path: root/tutorials/module_4
diff options
context:
space:
mode:
Diffstat (limited to 'tutorials/module_4')
-rw-r--r--tutorials/module_4/linear_regression.md18
-rw-r--r--tutorials/module_4/notebook_4/plotting.ipynb17
-rw-r--r--tutorials/module_4/plotting.md3
3 files changed, 38 insertions, 0 deletions
diff --git a/tutorials/module_4/linear_regression.md b/tutorials/module_4/linear_regression.md
new file mode 100644
index 0000000..b21415b
--- /dev/null
+++ b/tutorials/module_4/linear_regression.md
@@ -0,0 +1,18 @@
+# Linear Regression
+
+
+
+## Statical tools
+Numpy comes with some useful statistical tools that we can use to analyze our data.
+
+### Mean
+The mean is the average of a set of numbers. It is calculated by summing all the numbers and dividing by the count of numbers.
+
+```python
+import numpy as np
+
+mean = np.mean([1, 2, 3, 4, 5])
+median = np.median([1, 2, 3, 4, 5])
+std = np.std([1, 2, 3, 4, 5])
+variance = np.var([1, 2, 3, 4, 5])
+```
diff --git a/tutorials/module_4/notebook_4/plotting.ipynb b/tutorials/module_4/notebook_4/plotting.ipynb
new file mode 100644
index 0000000..650daad
--- /dev/null
+++ b/tutorials/module_4/notebook_4/plotting.ipynb
@@ -0,0 +1,17 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Plotting\n",
+ "\n",
+ "## matlibplot"
+ ],
+ "id": "c1faa4f4-55cb-4e59-a732-bada47ed2a19"
+ }
+ ],
+ "nbformat": 4,
+ "nbformat_minor": 5,
+ "metadata": {}
+}
diff --git a/tutorials/module_4/plotting.md b/tutorials/module_4/plotting.md
new file mode 100644
index 0000000..b309e2f
--- /dev/null
+++ b/tutorials/module_4/plotting.md
@@ -0,0 +1,3 @@
+# Plotting
+
+## matlibplot