summaryrefslogtreecommitdiff
path: root/book/module1/arrays.tex
blob: a5486d92b9c66cdf0753477559328f6384d22715 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
    \hypertarget{matrixarrays}{%
\section{matrixArrays}\label{matrixarrays}}

In computer programming, an array is a structure for storing and
retrieving data. We often talk about an array as if it were a grid in
space, with each cell storing one element of the data. For instance, if
each element of the data were a number, we might visualize a
``one-dimensional'' array like a list:

\begin{longtable}[]{@{}llll@{}}
\toprule
1 & 5 & 2 & 0 \\
\midrule
\endhead
\bottomrule
\end{longtable}

A two-dimensional array would be like a table:

\begin{longtable}[]{@{}llll@{}}
\toprule
1 & 5 & 2 & 0 \\
\midrule
\endhead
8 & 3 & 6 & 1 \\
1 & 7 & 2 & 9 \\
\bottomrule
\end{longtable}

A three-dimensional array would be like a set of tables, perhaps stacked
as though they were printed on separate pages. If we visualize the
position of each element as a position in space. Then we can represent
the value of the element as a property. In other words, if we were to
analyze the stress concentration of an aluminum block, the property
would be stress.

\begin{itemize}
\tightlist
\item
  From
  \href{https://numpy.org/doc/2.2/user/absolute_beginners.html}{Numpy
  documentation}

\end{itemize}

If the load on this block changes over time, then we may want to add a
4th dimension i.e.~additional sets of 3-D arrays for each time
increment. As you can see - the more dimensions we add, the more
complicated of a problem we have to solve. It is possible to increase
the number of dimensions to the n-th order. This course we will not be
going beyond dimensional analysis.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\hypertarget{numpy---the-pythons-array-library}{%
\section{Numpy - the python's array
library}\label{numpy---the-pythons-array-library}}

In this tutorial we will be introducing arrays and we will be using the
numpy library. Arrays, lists, vectors, matrices, sets - You might've
heard of them before, they all store data. In programming, an array is a
variable that can hold more than one value at a time. We will be using
the Numpy python library to create arrays. Since we already have
installed Numpy previously, we can start using the package.

Before importing our first package, let's as ourselves \emph{what is a
package?} A package can be thought of as pre-written python code that we
can re-use. This means the for every script that we write in python we
need to tell it to use a certain package. We call this importing a
package.

\hypertarget{importing-numpy}{%
\subsection{Importing Numpy}\label{importing-numpy}}

When using packages in python, we need to let it know what package we
will be using. This is called importing. To import numpy we need to
declare it a the start of a script as follows:

\begin{Shaded}
\begin{Highlighting}[]
\ImportTok{import}\NormalTok{ numpy }\ImportTok{as}\NormalTok{ np}
\end{Highlighting}
\end{Shaded}

\begin{itemize}
\tightlist
\item
  \texttt{import} - calls for a library to use, in our case it is Numpy.
\item
  \texttt{as} - gives the library an alias in your script. It's common
  convention in Python programming to make the code shorter and more
  readable. We will be using \emph{np} as it's a standard using in many
  projects.
\end{itemize}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\hypertarget{creating-arrays}{%
\section{Creating arrays}\label{creating-arrays}}

Now that we have imported the library we can create a one dimensional
array or \emph{vector} with three elements.

\begin{Shaded}
\begin{Highlighting}[]
\NormalTok{x }\OperatorTok{=}\NormalTok{ np.array([}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{3}\NormalTok{])}
\end{Highlighting}
\end{Shaded}

To create a \emph{matrix} we can nest the arrays to create a two
dimensional array. This is done as follows.

\begin{Shaded}
\begin{Highlighting}[]
\NormalTok{matrix }\OperatorTok{=}\NormalTok{ np.array([[}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{3}\NormalTok{],}
\NormalTok{                   [}\DecValTok{4}\NormalTok{,}\DecValTok{5}\NormalTok{,}\DecValTok{6}\NormalTok{],}
\NormalTok{                   [}\DecValTok{7}\NormalTok{,}\DecValTok{8}\NormalTok{,}\DecValTok{9}\NormalTok{]])}
\end{Highlighting}
\end{Shaded}

\emph{Note: for every array we nest, we get a new dimension in our data
structure.}

    \hypertarget{display-arrays}{%
\section{Display arrays}\label{display-arrays}}

Using command print("") Accessing particular elements of an array
\ldots..

    \hypertarget{practice-problem}{%
\section{Practice Problem}\label{practice-problem}}

Problem statement

    \begin{tcolorbox}[breakable, size=fbox, boxrule=1pt, pad at break*=1mm,colback=cellbackground, colframe=cellborder]
\prompt{In}{incolor}{1}{\boxspacing}
\begin{Verbatim}[commandchars=\\\{\}]
\PY{k+kn}{import} \PY{n+nn}{numpy} \PY{k}{as} \PY{n+nn}{np}

\PY{n}{x} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{array}\PY{p}{(}\PY{p}{[}\PY{l+m+mi}{7}\PY{p}{,} \PY{l+m+mi}{10} \PY{p}{,}\PY{l+m+mi}{12}\PY{p}{]}\PY{p}{)}

\PY{n+nb}{print}\PY{p}{(}\PY{n}{x}\PY{p}{)}

\PY{n+nb}{print}\PY{p}{(}\PY{n}{x}\PY{p}{[}\PY{l+m+mi}{1}\PY{p}{]}\PY{p}{)}
\end{Verbatim}
\end{tcolorbox}

    \begin{Verbatim}[commandchars=\\\{\}]
[ 7 10 12]
10
    \end{Verbatim}

    \hypertarget{numpy-array-creation-functions}{%
\subsection{Numpy array creation
functions}\label{numpy-array-creation-functions}}

Numpy comes with some built-in function that we can use to create arrays
quickly. Here are a couple of functions that are commonly used in
python.

\hypertarget{np.arange}{%
\subsubsection{np.arange}\label{np.arange}}

The \texttt{np.arange()} function returns an array with evenly spaced
values within a specified range. It is similar to the built-in
\texttt{range()} function in Python but returns a Numpy array instead of
a list. The parameters for this function are the start value
(inclusive), the stop value (exclusive), and the step size. If the step
size is not provided, it defaults to 1.

\begin{Shaded}
\begin{Highlighting}[]
\OperatorTok{\textgreater{}\textgreater{}\textgreater{}}\NormalTok{ np.arange(}\DecValTok{4}\NormalTok{)}
\NormalTok{array([}\FloatTok{0.}\NormalTok{ , }\FloatTok{1.}\NormalTok{, }\FloatTok{2.}\NormalTok{, }\FloatTok{3.}\NormalTok{ ])}
\end{Highlighting}
\end{Shaded}

In this example, \texttt{np.arange(4)} generates an array starting from
0 and ending before 4, with a step size of 1.

\hypertarget{np.linspace}{%
\subsubsection{np.linspace}\label{np.linspace}}

The \texttt{np.linspace()} function returns an array of evenly spaced
values over a specified range. Unlike \texttt{np.arange()}, which uses a
step size to define the spacing between elements, \texttt{np.linspace()}
uses the number of values you want to generate and calculates the
spacing automatically. It accepts three parameters: the start value, the
stop value, and the number of samples.

\begin{Shaded}
\begin{Highlighting}[]
\OperatorTok{\textgreater{}\textgreater{}\textgreater{}}\NormalTok{ np.linspace(}\FloatTok{1.}\NormalTok{, }\FloatTok{4.}\NormalTok{, }\DecValTok{6}\NormalTok{)}
\NormalTok{array([}\FloatTok{1.}\NormalTok{ ,  }\FloatTok{1.6}\NormalTok{,  }\FloatTok{2.2}\NormalTok{,  }\FloatTok{2.8}\NormalTok{,  }\FloatTok{3.4}\NormalTok{,  }\FloatTok{4.}\NormalTok{ ])}
\end{Highlighting}
\end{Shaded}

In this example, \texttt{np.linspace(1.,\ 4.,\ 6)} generates 6 evenly
spaced values between 1. and 4., including both endpoints.

Try this and see what happens:

\begin{Shaded}
\begin{Highlighting}[]
\NormalTok{x }\OperatorTok{=}\NormalTok{ np.linspace(}\DecValTok{0}\NormalTok{,}\DecValTok{100}\NormalTok{,}\DecValTok{101}\NormalTok{)}
\NormalTok{y }\OperatorTok{=}\NormalTok{ np.sin(x)}
\end{Highlighting}
\end{Shaded}

\hypertarget{other-useful-functions}{%
\subsubsection{Other useful functions}\label{other-useful-functions}}

\begin{itemize}
\tightlist
\item
  \texttt{np.zeros()}
\item
  \texttt{np.ones()}
\item
  \texttt{np.eye()}
\end{itemize}

    \hypertarget{practice-problem}{%
\subsection{Practice problem}\label{practice-problem}}

Problem statement below

    \begin{tcolorbox}[breakable, size=fbox, boxrule=1pt, pad at break*=1mm,colback=cellbackground, colframe=cellborder]
\prompt{In}{incolor}{2}{\boxspacing}
\begin{Verbatim}[commandchars=\\\{\}]
\PY{n}{y}\PY{o}{=}\PY{n}{np}\PY{o}{.}\PY{n}{linspace}\PY{p}{(}\PY{l+m+mi}{10}\PY{p}{,}\PY{l+m+mi}{20}\PY{p}{,}\PY{l+m+mi}{5}\PY{p}{)}
\PY{n+nb}{print}\PY{p}{(}\PY{n}{y}\PY{p}{)}
\end{Verbatim}
\end{tcolorbox}

    \begin{Verbatim}[commandchars=\\\{\}]
[10.  12.5 15.  17.5 20. ]
    \end{Verbatim}

    \hypertarget{working-with-arrays}{%
\subsection{Working with Arrays}\label{working-with-arrays}}

Now that we have been introduced to some ways to create arrays using the
Numpy functions let's start using them.

\hypertarget{indexing}{%
\subsubsection{Indexing}\label{indexing}}

Indexing in Python allows you to access specific elements within an
array based on their position. This means you can directly retrieve and
manipulate individual items as needed.

Python uses \textbf{zero-based indexing}, meaning the first element is
at position \textbf{0} rather than \textbf{1}. This approach is common
in many programming languages. For example, in a list with five
elements, the first element is at index \texttt{0}, followed by elements
at indices \texttt{1}, \texttt{2}, \texttt{3}, and \texttt{4}.

Here's an example of data from a rocket test stand where thrust was
recorded as a function of time.

\begin{Shaded}
\begin{Highlighting}[]
\NormalTok{thrust\_lbf }\OperatorTok{=}\NormalTok{ np.array(}\FloatTok{0.603355}\NormalTok{, }\FloatTok{2.019083}\NormalTok{, }\FloatTok{2.808092}\NormalTok{, }\FloatTok{4.054973}\NormalTok{, }\FloatTok{1.136618}\NormalTok{, }\FloatTok{0.943668}\NormalTok{)}

\OperatorTok{\textgreater{}\textgreater{}\textgreater{}}\NormalTok{ thrust\_lbs[}\DecValTok{3}\NormalTok{]}
\end{Highlighting}
\end{Shaded}

Due to the nature of zero-based indexing. If we want to call the value
\texttt{4.054973} that will be the 3rd index.

\hypertarget{operations-on-arrays}{%
\subsubsection{Operations on arrays}\label{operations-on-arrays}}

\begin{itemize}
\tightlist
\item
  Arithmetic operations (\texttt{+}, \texttt{-}, \texttt{*}, \texttt{/},
  \texttt{**})
\item
  \texttt{np.add()}, \texttt{np.subtract()}, \texttt{np.multiply()},
  \texttt{np.divide()}
\item
  \texttt{np.dot()} for dot product
\item
  \texttt{np.matmul()} for matrix multiplication
\item
  \texttt{np.linalg.inv()}, \texttt{np.linalg.det()} for linear algebra
\end{itemize}

\hypertarget{statistics}{%
\paragraph{Statistics}\label{statistics}}

\begin{itemize}
\tightlist
\item
  \texttt{np.mean()}, \texttt{np.median()}, \texttt{np.std()},
  \texttt{np.var()}
\item
  \texttt{np.min()}, \texttt{np.max()}, \texttt{np.argmin()},
  \texttt{np.argmax()}
\item
  Summation along axes: \texttt{np.sum(arr,\ axis=0)}
\end{itemize}

\hypertarget{combining-arrays}{%
\paragraph{Combining arrays}\label{combining-arrays}}

\begin{itemize}
\tightlist
\item
  Concatenation: \texttt{np.concatenate((arr1,\ arr2),\ axis=0)}
\item
  Stacking: \texttt{np.vstack()}, \texttt{np.hstack()}
\item
  Splitting: \texttt{np.split()}
\end{itemize}

    \hypertarget{exercise}{%
\section{Exercise}\label{exercise}}

Let's solve a statics problem given the following problem

A simply supported bridge of length L=20L = 20L=20 m is subjected to
three point loads:

\begin{itemize}
\tightlist
\item
  \(P1=1010 kN\) at \(x=5m\)
\item
  \(P2=15 kN\) at \(x=10m\)
\item
  \(P3=20 kN\) at \(x=15m\)
\end{itemize}

The bridge is supported by two reaction forces at points AAA (left
support) and BBB (right support). We assume the bridge is in static
equilibrium, meaning the sum of forces and sum of moments about any
point must be zero.

\hypertarget{equilibrium-equations}{%
\paragraph{Equilibrium Equations:}\label{equilibrium-equations}}

\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\item
  \textbf{Sum of Forces in the Vertical Direction}:

  \(R_A + R_B - P_1 - P_2 - P_3 = 0\)
\item
  \textbf{Sum of Moments About Point A}:

  \(5 P_1 + 10 P_2 + 15 P_3 - 20 R_B = 0\)
\item
  \textbf{Sum of Moments About Point B}:

  \(20 R_A - 15 P_3 - 10 P_2 - 5 P_1 = 0\)
\end{enumerate}

\hypertarget{system-of-equations}{%
\paragraph{System of Equations:}\label{system-of-equations}}

\[
\begin{cases}
R_A + R_B - 10 - 15 - 20 = 0 \\
5 \cdot 10 + 10 \cdot 15 + 15 \cdot 20 - 20 R_B = 0 \\
20 R_A - 5 \cdot 10 - 10 \cdot 15 - 15 \cdot 20 = 0
\end{cases}
\]

    \hypertarget{solution}{%
\subsubsection{Solution}\label{solution}}

    \begin{tcolorbox}[breakable, size=fbox, boxrule=1pt, pad at break*=1mm,colback=cellbackground, colframe=cellborder]
\prompt{In}{incolor}{3}{\boxspacing}
\begin{Verbatim}[commandchars=\\\{\}]
\PY{k+kn}{import} \PY{n+nn}{numpy} \PY{k}{as} \PY{n+nn}{np}

\PY{c+c1}{\PYZsh{} Define the coefficient matrix A}
\PY{n}{A} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{array}\PY{p}{(}\PY{p}{[}
    \PY{p}{[}\PY{l+m+mi}{1}\PY{p}{,} \PY{l+m+mi}{1}\PY{p}{]}\PY{p}{,}
    \PY{p}{[}\PY{l+m+mi}{0}\PY{p}{,} \PY{o}{\PYZhy{}}\PY{l+m+mi}{20}\PY{p}{]}\PY{p}{,}
    \PY{p}{[}\PY{l+m+mi}{20}\PY{p}{,} \PY{l+m+mi}{0}\PY{p}{]}
\PY{p}{]}\PY{p}{)}

\PY{c+c1}{\PYZsh{} Define the right\PYZhy{}hand side vector b}
\PY{n}{b} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{array}\PY{p}{(}\PY{p}{[}
    \PY{l+m+mi}{45}\PY{p}{,}
    \PY{l+m+mi}{5}\PY{o}{*}\PY{l+m+mi}{10} \PY{o}{+} \PY{l+m+mi}{10}\PY{o}{*}\PY{l+m+mi}{15} \PY{o}{+} \PY{l+m+mi}{15}\PY{o}{*}\PY{l+m+mi}{20}\PY{p}{,}
    \PY{l+m+mi}{5}\PY{o}{*}\PY{l+m+mi}{10} \PY{o}{+} \PY{l+m+mi}{10}\PY{o}{*}\PY{l+m+mi}{15} \PY{o}{+} \PY{l+m+mi}{15}\PY{o}{*}\PY{l+m+mi}{20}
\PY{p}{]}\PY{p}{)}

\PY{c+c1}{\PYZsh{} Solve the system of equations Ax = b}
\PY{c+c1}{\PYZsh{} Using least squares to handle potential overdetermination}
\PY{n}{x} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{linalg}\PY{o}{.}\PY{n}{lstsq}\PY{p}{(}\PY{n}{A}\PY{p}{,} \PY{n}{b}\PY{p}{,} \PY{n}{rcond}\PY{o}{=}\PY{k+kc}{None}\PY{p}{)}\PY{p}{[}\PY{l+m+mi}{0}\PY{p}{]}

\PY{c+c1}{\PYZsh{} Display the results}
\PY{n+nb}{print}\PY{p}{(}\PY{l+s+sa}{f}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{Reaction force at A (R\PYZus{}A): }\PY{l+s+si}{\PYZob{}}\PY{n}{x}\PY{p}{[}\PY{l+m+mi}{0}\PY{p}{]}\PY{l+s+si}{:}\PY{l+s+s2}{.2f}\PY{l+s+si}{\PYZcb{}}\PY{l+s+s2}{ kN}\PY{l+s+s2}{\PYZdq{}}\PY{p}{)}
\PY{n+nb}{print}\PY{p}{(}\PY{l+s+sa}{f}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{Reaction force at B (R\PYZus{}B): }\PY{l+s+si}{\PYZob{}}\PY{n}{x}\PY{p}{[}\PY{l+m+mi}{1}\PY{p}{]}\PY{l+s+si}{:}\PY{l+s+s2}{.2f}\PY{l+s+si}{\PYZcb{}}\PY{l+s+s2}{ kN}\PY{l+s+s2}{\PYZdq{}}\PY{p}{)}
\end{Verbatim}
\end{tcolorbox}

    \begin{Verbatim}[commandchars=\\\{\}]
Reaction force at A (R\_A): 25.11 kN
Reaction force at B (R\_B): -24.89 kN
    \end{Verbatim}


    % Add a bibliography block to the postdoc