blob: d75c35ac1b1ba676a6140c1ca9c8b5989b3ba16f (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
|
# Data Processing
^7b1480
## Signal Processing - Filtering
### Low-Pass
### High-Pass
### Band-Pass
## Data Filtering
## Data Cleaning
### Empty Cells
Remove data point - `df.dropna()`
Replace data point - `fillna(130, inplace = True)`
We can use this to replace each data point with mean, median or mode -
```python
x = df["Calories"].mean()
df.fillna({"Calories": x}, inplace=True)
```
###
Example
https://www.w3schools.com/python/pandas/pandas_cleaning.asp
|