blob: 0b8ef6f279d0b1b08880104267ba6bd2fcd680a6 (
plain)
1
2
3
4
5
6
7
8
9
10
11
|
Lecture 5: Data for Engineering: Features, Labels, Normalization, Metrics
- Train/validaiton/test splits
- Normalization & scaling
- Features engineering basics
- Metrics: accuracy, MSE, ROC, F1
- Engineering-specific constraints:
- sensor noise
- unit consistency
- small datasets
- measurement bias
|