summaryrefslogtreecommitdiff
path: root/tutorials
diff options
context:
space:
mode:
authorChristian Kolset <christian.kolset@gmail.com>2025-12-05 17:19:09 -0700
committerChristian Kolset <christian.kolset@gmail.com>2025-12-05 17:19:09 -0700
commit39951d053090d933a5f6520710993fa9361b9b73 (patch)
tree8054d36ca163881abd53534bcb669bcd97ee9fe8 /tutorials
parentdb4ccdbf5305dae374882e5416db88be91ec132b (diff)
Added module 5 lectures in markdown
Diffstat (limited to 'tutorials')
-rw-r--r--tutorials/module_5/convolutional_neural_networks_for_engineering_images.md10
-rw-r--r--tutorials/module_5/data_for_engineering.md11
-rw-r--r--tutorials/module_5/failure_and_fatigue_prediction.md10
-rw-r--r--tutorials/module_5/how_neural_networks_learn.md7
-rw-r--r--tutorials/module_5/introduction_to_ai.md13
-rw-r--r--tutorials/module_5/neural_networks_core_concepts.md8
-rw-r--r--tutorials/module_5/supervised_learning_techniques.md13
-rw-r--r--tutorials/module_5/unsupervised_learning_clustering_and_dimensionality_reduction.md10
8 files changed, 82 insertions, 0 deletions
diff --git a/tutorials/module_5/convolutional_neural_networks_for_engineering_images.md b/tutorials/module_5/convolutional_neural_networks_for_engineering_images.md
new file mode 100644
index 0000000..81df8b5
--- /dev/null
+++ b/tutorials/module_5/convolutional_neural_networks_for_engineering_images.md
@@ -0,0 +1,10 @@
+Lecture 7: Convolutional Neural Networks for Engineering Images
+
+- Why fully connected NNs fail on images
+- Convolution: filters, feature maps
+- Pooling & downsampling
+- CNN pipeline overview
+- Applications:
+ - Crack detection in metals/concrete
+ - manufacturing defect identification
+ - thermal-image pattern recognition \ No newline at end of file
diff --git a/tutorials/module_5/data_for_engineering.md b/tutorials/module_5/data_for_engineering.md
new file mode 100644
index 0000000..0b8ef6f
--- /dev/null
+++ b/tutorials/module_5/data_for_engineering.md
@@ -0,0 +1,11 @@
+Lecture 5: Data for Engineering: Features, Labels, Normalization, Metrics
+
+- Train/validaiton/test splits
+- Normalization & scaling
+- Features engineering basics
+- Metrics: accuracy, MSE, ROC, F1
+- Engineering-specific constraints:
+ - sensor noise
+ - unit consistency
+ - small datasets
+ - measurement bias \ No newline at end of file
diff --git a/tutorials/module_5/failure_and_fatigue_prediction.md b/tutorials/module_5/failure_and_fatigue_prediction.md
new file mode 100644
index 0000000..c4ac70b
--- /dev/null
+++ b/tutorials/module_5/failure_and_fatigue_prediction.md
@@ -0,0 +1,10 @@
+Lecture 8: AI for Failure & Fatigue Prediction
+
+- Using time-series sensor data
+- Features: peaks, cycles, RMS, stress/strain sequences
+- Classical models vs ANN-based predictors
+- Introduction to RUL (Remaining Useful Life) concepts
+- Real-world challenges:
+ - limited failure examples
+ - imbalanced data
+ - saftey requirements and false positives \ No newline at end of file
diff --git a/tutorials/module_5/how_neural_networks_learn.md b/tutorials/module_5/how_neural_networks_learn.md
new file mode 100644
index 0000000..f81ec4d
--- /dev/null
+++ b/tutorials/module_5/how_neural_networks_learn.md
@@ -0,0 +1,7 @@
+Lecture 3: How Neural Networks Learn
+
+- Loss functions
+- Gradient descent & optimization
+- Backpropagation concept
+- Underfitting, overfitting, regularization
+- Hyperparametersupervised Learning: Regression for engineering systems \ No newline at end of file
diff --git a/tutorials/module_5/introduction_to_ai.md b/tutorials/module_5/introduction_to_ai.md
new file mode 100644
index 0000000..17477c5
--- /dev/null
+++ b/tutorials/module_5/introduction_to_ai.md
@@ -0,0 +1,13 @@
+Lecture 1: Introduction to AI
+
+- Historical context: Expert systems -> machine learning -> deep learning
+- What is AI? Deep learning? Neural Networks?
+- What makes AI useful in engineering: automation, prediction, anomaly detection
+- Types of engineering problems where ai is superior.
+- Application:
+ - Predictive maintenance
+ - Quality control
+ - CFD/FEA surrogate models
+- Limitations, misconceptions and ethical considerations
+- Short demo: Show a simple trained model making prediction (linear regression)
+
diff --git a/tutorials/module_5/neural_networks_core_concepts.md b/tutorials/module_5/neural_networks_core_concepts.md
new file mode 100644
index 0000000..4c81e91
--- /dev/null
+++ b/tutorials/module_5/neural_networks_core_concepts.md
@@ -0,0 +1,8 @@
+Lecture 2: Neural Networks: Core Concepts
+
+- Perceptron, weights, bias
+- Multi-layer perceptron (MLP)
+- Activation functions
+- Forward pass (conceptual math only)
+- Why neural networks can learn nonlinear engineering behavior
+- Small example: predicting a nonlinear spring force curve \ No newline at end of file
diff --git a/tutorials/module_5/supervised_learning_techniques.md b/tutorials/module_5/supervised_learning_techniques.md
new file mode 100644
index 0000000..c84155a
--- /dev/null
+++ b/tutorials/module_5/supervised_learning_techniques.md
@@ -0,0 +1,13 @@
+Lecture 4: Supervised Learning Techniques
+
+- Definition: supervised learning = labeled data
+- Regression tasks
+- Classification tasks
+- Classical ML models
+ - linear & logistic regression
+ - decision trees
+ - k-NN
+- Engineering examples
+ - Predicting tool wear
+ - classifying vibration patterns
+
diff --git a/tutorials/module_5/unsupervised_learning_clustering_and_dimensionality_reduction.md b/tutorials/module_5/unsupervised_learning_clustering_and_dimensionality_reduction.md
new file mode 100644
index 0000000..3f704b5
--- /dev/null
+++ b/tutorials/module_5/unsupervised_learning_clustering_and_dimensionality_reduction.md
@@ -0,0 +1,10 @@
+Lecture 6: Unsupervised learning: Clustering & Dimensionality Reduciton
+
+- Definition:
+- k-means and hierachical clsutering
+- PCA for dimensionality reduction
+- Applications:
+ - Grouping failure modes
+ - anomaly detection in vibration data
+ - clustering material micro structure patterns
+