diff options
Diffstat (limited to 'tutorials/module_1/notebook_1/1_excel_to_python.ipynb')
| -rw-r--r-- | tutorials/module_1/notebook_1/1_excel_to_python.ipynb | 99 |
1 files changed, 99 insertions, 0 deletions
diff --git a/tutorials/module_1/notebook_1/1_excel_to_python.ipynb b/tutorials/module_1/notebook_1/1_excel_to_python.ipynb new file mode 100644 index 0000000..98d8a02 --- /dev/null +++ b/tutorials/module_1/notebook_1/1_excel_to_python.ipynb @@ -0,0 +1,99 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Excel to Python\n", + "\n", + "- Importing\n", + "- Plotting\n", + "- Statistical analysis\n", + "\n", + "## **How Excel Translates to Python**\n", + "\n", + "Here’s how common Excel functionalities map to Python:\n", + "\n", + "| **Excel Feature** | **Python Equivalent** |\n", + "|----------------------|--------------------------------------------------|\n", + "| Formulas (SUM, AVERAGE) | `numpy`, `pandas` (`df.sum()`, `df.mean()`) |\n", + "| Sorting & Filtering | `pandas.sort_values()`, `df[df['col'] > value]` |\n", + "| Conditional Formatting | `matplotlib` for highlighting |\n", + "| Pivot Tables | `pandas.pivot_table()` |\n", + "| Charts & Graphs | `matplotlib`, `seaborn`, `plotly` |\n", + "| Regression Analysis | `scipy.stats.linregress`, `sklearn.linear_model` |\n", + "| Solver/Optimization | `scipy.optimize` |\n", + "| VBA Macros | Python scripting with `openpyxl`, `pandas`, or `xlwings` |\n", + "\n", + "## Statistical functions\n", + "\n", + "#### SUM\n", + "\n", + "Built-in:\n", + "\n", + "``` python\n", + "my_array = [1, 2, 3, 4, 5]\n", + "total = sum(my_array)\n", + "print(total) # Output: 15\n", + "```\n", + "\n", + "Numpy:\n", + "\n", + "``` python\n", + "import numpy as np\n", + "\n", + "my_array = np.array([1, 2, 3, 4, 5])\n", + "total = np.sum(my_array)\n", + "print(total) # Output: 15\n", + "```\n", + "\n", + "### Average\n", + "\n", + "Built-in:\n", + "\n", + "``` python\n", + "my_array = [1, 2, 3, 4, 5]\n", + "average = sum(my_array) / len(my_array)\n", + "print(average) # Output: 3.0\n", + "```\n", + "\n", + "Numpy:\n", + "\n", + "``` python\n", + "import numpy as np\n", + "\n", + "my_array = np.array([1, 2, 3, 4, 5])\n", + "average = np.mean(my_array)\n", + "print(average) # Output: 3.0\n", + "```\n", + "\n", + "## Plotting\n", + "\n", + "We can use the package *matplotlib* to plot our graphs in python.\n", + "Matplotlib provides data visualization tools for the Scientific Python\n", + "Ecosystem. You can make very professional looking figures with this\n", + "tool.\n", + "\n", + "Here is a section from the matplotlib documentation page that you can\n", + "run in python.\n", + "\n", + "``` python\n", + "import matplotlib.pyplot as plt\n", + "\n", + "fig, ax = plt.subplots() # Create a figure containing a single Axes.\n", + "ax.plot([1, 2, 3, 4], [1, 4, 2, 3]) # Plot some data on the Axes.\n", + "plt.show() # Show the figure.\n", + "```\n", + "\n", + "Check out the documentation pages for a [simple\n", + "example](https://matplotlib.org/stable/users/explain/quick_start.html#a-simple-example)\n", + "or more information on the types of plots you came create\n", + "[here](https://matplotlib.org/stable/plot_types/index.html)." + ], + "id": "3e04cd8a-c731-494a-bf4f-dfe745a8a487" + } + ], + "nbformat": 4, + "nbformat_minor": 5, + "metadata": {} +} |
