summaryrefslogtreecommitdiff
path: root/tutorials/module_1/notebook_1/1_excel_to_python.ipynb
blob: 98d8a0285bb1b9fcb5d12dd1acb27a23fa1e62ce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Excel to Python\n",
    "\n",
    "-   Importing\n",
    "-   Plotting\n",
    "-   Statistical analysis\n",
    "\n",
    "## **How Excel Translates to Python**\n",
    "\n",
    "Here’s how common Excel functionalities map to Python:\n",
    "\n",
    "| **Excel Feature**       | **Python Equivalent**                                    |\n",
    "|----------------------|--------------------------------------------------|\n",
    "| Formulas (SUM, AVERAGE) | `numpy`, `pandas` (`df.sum()`, `df.mean()`)              |\n",
    "| Sorting & Filtering     | `pandas.sort_values()`, `df[df['col'] > value]`          |\n",
    "| Conditional Formatting  | `matplotlib` for highlighting                            |\n",
    "| Pivot Tables            | `pandas.pivot_table()`                                   |\n",
    "| Charts & Graphs         | `matplotlib`, `seaborn`, `plotly`                        |\n",
    "| Regression Analysis     | `scipy.stats.linregress`, `sklearn.linear_model`         |\n",
    "| Solver/Optimization     | `scipy.optimize`                                         |\n",
    "| VBA Macros              | Python scripting with `openpyxl`, `pandas`, or `xlwings` |\n",
    "\n",
    "## Statistical functions\n",
    "\n",
    "#### SUM\n",
    "\n",
    "Built-in:\n",
    "\n",
    "``` python\n",
    "my_array = [1, 2, 3, 4, 5]\n",
    "total = sum(my_array)\n",
    "print(total)  # Output: 15\n",
    "```\n",
    "\n",
    "Numpy:\n",
    "\n",
    "``` python\n",
    "import numpy as np\n",
    "\n",
    "my_array = np.array([1, 2, 3, 4, 5])\n",
    "total = np.sum(my_array)\n",
    "print(total)  # Output: 15\n",
    "```\n",
    "\n",
    "### Average\n",
    "\n",
    "Built-in:\n",
    "\n",
    "``` python\n",
    "my_array = [1, 2, 3, 4, 5]\n",
    "average = sum(my_array) / len(my_array)\n",
    "print(average)  # Output: 3.0\n",
    "```\n",
    "\n",
    "Numpy:\n",
    "\n",
    "``` python\n",
    "import numpy as np\n",
    "\n",
    "my_array = np.array([1, 2, 3, 4, 5])\n",
    "average = np.mean(my_array)\n",
    "print(average)  # Output: 3.0\n",
    "```\n",
    "\n",
    "## Plotting\n",
    "\n",
    "We can use the package *matplotlib* to plot our graphs in python.\n",
    "Matplotlib provides data visualization tools for the Scientific Python\n",
    "Ecosystem. You can make very professional looking figures with this\n",
    "tool.\n",
    "\n",
    "Here is a section from the matplotlib documentation page that you can\n",
    "run in python.\n",
    "\n",
    "``` python\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "fig, ax = plt.subplots()             # Create a figure containing a single Axes.\n",
    "ax.plot([1, 2, 3, 4], [1, 4, 2, 3])  # Plot some data on the Axes.\n",
    "plt.show()                           # Show the figure.\n",
    "```\n",
    "\n",
    "Check out the documentation pages for a [simple\n",
    "example](https://matplotlib.org/stable/users/explain/quick_start.html#a-simple-example)\n",
    "or more information on the types of plots you came create\n",
    "[here](https://matplotlib.org/stable/plot_types/index.html)."
   ],
   "id": "3e04cd8a-c731-494a-bf4f-dfe745a8a487"
  }
 ],
 "nbformat": 4,
 "nbformat_minor": 5,
 "metadata": {}
}